首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《印度化学会志》2021,98(11):100213
Synthesis of nanoparticles having low chemical toxicity has been interest of researchers for decades. Utilization of plant phytochemicals as reducing agent is now a globally recognized alternative technique for environmental friendly and low-cost production of nanoparticles. This work reports a facile green synthesis protocol of Nickel Oxide nanoparticles (NiO NPs) using fresh tea leaf extract. The synthesized nanoparticles have been characterized through various analytical techniques like Powder XRD (P-XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The XRD results reveal the formation of crystalline nickel oxide nanoparticles. FTIR spectrum displays the existence of different polyphenolic groups over NiO NPs surface. TEM and SEM images indicate the formation of slightly agglomerated spherical nanoparticles with particle size 3–5 ​nm. The nanoparticles were used towards the photocatalytic degradation of both cationic, anionic dyes and their mixtures under optimum conditions in the presence of UV light irradiation. More than 95% degradation was observed for all the dye solutions with 30 ​mg ​L-1 catalytic dose. Moreover, the degradation efficiency of the nanoparticle was studied by altering various parameters like pH, initial dye concentration and amount of catalytic dose. Pseudo first order kinetic model was employed in all the reactions. A detailed mechanism and kinetics of the all the reactions were studied. Interestingly, the catalyst showed excellent recyclability up-to 4th cycles with very low catalytic activity loss.  相似文献   

2.
《印度化学会志》2021,98(11):100197
Herein we report an eco-friendly and cost efficient synthesis of Fe doped ZnO (TPFZO) nanoparticles using the extract of Thespesia polpulanea flowers as a stabilizing agent. The synthesized NPs have been characterized by XRD, FT-IR, UV-DRS, SEM, EDAX and TEM studies. The synthesized NPs were found to have the crystallite size in the range of 30–60 ​nm. The calculated band gap energies for ZO and TPFZO nanoparticles were 3.00 ​eV and 1.97 ​eV respectively. The size distribution of the ZO and TPFZO obtained from TEM were observed to be lying in the range 50–120 ​nm and 4–22 ​nm respectively. The interaction of TPFZO NPs with bovine serum albumin (BSA) has been studied using fluorescence and absorption titration methods. The results indicated that the nanoparticles quenched the BSA fluorescence at 340 ​nm via static quenching mode having a bimolecular quenching rate constant value of 6.21 ​× ​1013 Lmol−1s−1.  相似文献   

3.
《印度化学会志》2021,98(6):100056
An efficient green method was used for the synthesis of polyphenol capped iron oxide nanoparticles (ION) from an agro waste, peanut skin. The polyphenol capped ION was characterized by Fourier transformed infra-red (FTIR), Powder XRD and X-ray photoelectron spectroscopic (XPS) analysis. To evaluate the catalytic activities of ION, ring opening of epoxides by aromatic amines has been performed and the catalyst showed good activity with yields up to 90% of the major products using only 20 ​mg of the catalyst under solvent free neat condition at room temperature (28 ​°C) after 5 ​h. These nanoparticles can be reused for three times without significant loss in their activities.  相似文献   

4.
通过反向微乳液法, 在油溶性量子点表面包裹二氧化硅外壳, 使油溶性量子点水溶性化, 再利用3-氨丙基三乙氧基硅烷(APTES)在已形成的二氧化硅纳米颗粒表面进行氨基化改性, 制备富含氨基的二氧化硅包裹的量子点荧光纳米球. 通过透射电子显微镜(TEM)、粒径分析、zeta电位检测、紫外-可见分光光度、荧光分光光度和红外光谱等手段对产品进行了表征. 结果表明, 所制备的二氧化硅量子点纳米球(45 nm)具有单分散性、水溶性好及光化学稳定性强等优点. 通过静电作用, 所制备的单分散氨基化二氧化硅量子点对肿瘤细胞表面膜电荷进行了初步标记显像.  相似文献   

5.
以3-巯基丙酸(MPA)为稳定剂,采用水相合成法制备了从绿色到近红外发射的CdTe量子点。系统研究了反应液pH值、镉和碲的物质的量之比及镉和3-巯基丙酸的物质的量之比等实验条件对CdTe量子点体系的发射波长和荧光量子产率的影响。在pH值为10.5,且nCd2+∶nTe2-∶nMPA=1∶0.05∶1.1的条件下,回流0.5 h,CdTe量子点体系在569 nm波长处的荧光量子产率达到30.8%;在7 h的回流时间内,制备的量子点的波长覆盖范围为525~730 nm。分别用X射线粉末衍射、透射电镜和红外光谱对CdTe量子点的晶体结构、形貌及表面基团进行表征。  相似文献   

6.
《印度化学会志》2021,98(11):100191
Hydroxyapatite is a versatile compound resembling natural bone mineral. HAP insinuates feasibility with substitution ensuing in its application in various fields. The properties of calcium and strontium are cognate and pose as a bone-seeking trace-element that accumulates in new trabecular bone. Strontium substituted hydroxyapatite, Ca9.5Sr0.5(OH)2(PO4)6, was synthesized using citric acid as fuel and calcined 900 ​°C. The as-prepared product notably was characterized by powder X-ray diffraction, Fourier - Transform Infrared spectroscopy and Scanning Electron Microscope along with Energy Dispersive Spectroscopy. FT-IR analysis exhibited stretching and bending vibrations of (PO4)3- and OH groups along without any signal of carbonate group. Studies showed that product formed is strontium substituted hydroxyapatite, and calcination temperature plays an essential role in the formation of hydroxyapatite phase. The precursors when calcined resulted in 46–50 ​nm of Sr substituted hydroxyapatite.  相似文献   

7.
《印度化学会志》2021,98(11):100220
The water crisis is increased everywhere in recent years, which has affected the water demand in different sectors like industries, agriculture, residential, etc. The present research aims to the development of superabsorbent polymer (SAP) using bio-material. The hydrogel is synthesized by grafting Guar gum (GG) with methyl methacrylate (MMA) and crosslinking with polyethylene glycol (PEG). The developed GG-based hydrogelwas characterized by various analytical instruments. The Scanning Electron Microscopy (SEM) demonstrated hydrogels havepores of size 50 ​μm–10 ​μm. The Transmission Electron Microscopy (TEM) analysis has shownthat thematerial consists of spherical shapesand particles of size 141.11nm–182.19 ​nm.The Fourier-Transform Infrared Spectroscopy (FTIR) and Thermogravimetric analysis (TGA) study have confirmedthepresence of functional groups of material, and thermal resistivity. The absorption capacity of developed hydrogelwas found to be 110 ​ml per gram (110% of its dry weight). The hydrogelwasapplied in the field of sugarcane crop and measured soil moisture content after 20 days of application. A better resultwas found of moisture content in the area of hydrogel application (28%) compared to the area without hydrogel application (10%). Moreover, the comparison of different hydrogels is also shown in a study, and the developed hydrogel proves good moisture retention capacity. This technology could be promising in terms of improving perennial crop productivity and combating moisture stress in agriculture. As a soil conditioning material for agricultural applications, the synthesized hydrogel showed tremendous potential.  相似文献   

8.
Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified.  相似文献   

9.
We demonstrate the synthesis of copper selenide quantum dots (QDs) by element directed, inexpensive, straight forward wet chemical method which is free from any surfactant or template. Copper selenide QDs have been synthesized by elemental copper and selenium in the presence of ethylene glycol, hydrazine hydrate, and a defined amount of water at 70 °C within 8 h. The product is in strong quantum confinement regime, phase analysis, purity and morphology of the product has been well studied by X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), Photo-luminescent spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), High resolution transmission electron microscopy (HRTEM), and by Atomic force microscopy (AFM) techniques. The absorption and photoluminescence studies display large “blue shift”. TEM and HRTEM analyses revealed that the QDs diameters are in the range 2–5 nm. Due to the quantum confinement effect copper selenide QDs could be potential building blocks to construct functional devices and solar cell. The possible mechanism is also discussed.  相似文献   

10.
CdSe quantum dots as cores capped with ZnSe shell (CdSe@ZnSe QDs) via a facile and eco-friendly strategy have been synthesized in aqueous solution for the first time. The electrochemiluminescence (ECL) of CdSe@ZnSe QDs was greatly enhanced compared to that of CdSe QDs. In particular, the ECL properties of the resulting CdSe@ZnSe QDs were found to be controllable by adjusting the thickness of ZnSe shells. Benefiting from the enhanced ECL intensity, the sensor based on CdSe@ZnSe QDs could accurately quantify dopamine from 10.0 nM to 3.0 μM with a detection limit of 3.6 nM.  相似文献   

11.
Polyamidoamine (PAMAM) dendrimers and water-soluble 3-mercaptopropionic acid (MPA)-capped CdSe quantum dots (QDs) were combined to produce a new gel containing supramolecular complexes of QDs/PAMAM dendrimers. The formation of the QDs/PAMAM supramolecular complexes was confirmed by high resolution electron microscopy and Fourier transform infrared (FTIR) analyses. Molecular dynamics simulations corroborated the structure of the new QDs/PAMAM-based supramolecular compound. Finally, on the basis of the prominent fluorescent properties of the supramolecular complexes, PAMAM dendrimer was functionalized with folic acid to produce a new QDs/PAMAM-folate derivative that showed an efficient and selective performance as a marker for gastric cancer cells.  相似文献   

12.
This work investigated the effect of Potassium Permanganate (KMnO4) on graphene oxide (GO) properties, especially on electrical properties. The GO thin films were deposited on a glass substrate using drop casting technique and were analysed by using various type of spectroscopy (e.g. Scanning Electron Microscopy (SEM), Ultra- Violet Visible (UV–VIS), Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), optical band gap, Raman Spectroscopy). Furthermore, the electrical experiments were carried out by using current–voltage (I-V) characteristic. The GO thin film with 4.5 g of KMnO4 resulted in higher conductivity which is 3.11 × 10?4 S/cm while GO with 2.5 g and 3.5 g of KMnO4 achieve 2.47 × 10?9 S/cm and 1.07 × 10?7 S/cm, respectively. This further affects the morphological (SEM), optical (band gap, UV–Vis, FTIR, and Raman), and crystalline structural (XRD) properties of the GO thin films. The morphological, elemental, optical, and structural data confirmed that the properties of GO is affected by different amount of KMnO4 oxidizing agent, which revealed that GO can potentially be implemented for electrical and electronic devices.  相似文献   

13.
《印度化学会志》2021,98(3):100039
Removal of heavy metals through biosorption using biomass offers several advantages over other conventional techniques such as low cost, high efficiency, environmentally friendly, etc. In the present article, biosorption of Nickel(II) and Lead(II)was investigated using dried biomass of cyanobacterial consortium. OFAT (one-factor-at-a-time) analysis was used to assess the effect of input parameters on the removal of potentially toxic elements by varying initial metal ion concentration (2–10 mgL−1), adsorbent dose (0.1–1.0 gL-1), pH (for Pb(II): 2–6, for Ni(II): 2–8) and temperature (25°C–45°C) individually, at constant shaking speed of 150 ​rpm. Results showed that removal using biomass attained highest values in as short time as 15 ​min. The investigations also showed the removal is highly effective at lower initial concentrations of heavy metals. Maximum removal of Lead(II) (87.27 ​± ​1.75%) and Nickel(II) (92.57 ​± ​0.77%) was obtained at pH 6 and 45°C and at pH 7 and 25°C, respectively, within 15 ​min with 0.1 gL-1 biomass. Both the Langmuir model and Freundlich model were seen to fit the equilibrium data. Further, Artificial Neural Network was used to model the biosorption process. Subsequently, Particle Swarm Optimization was applied to optimize the operating conditions for the removal of both the metals.  相似文献   

14.
杨旭  周宏  沈彬  张玲 《物理化学学报》2010,26(1):244-248
采用低温水热技术,分别以柠檬酸(CA)和巯基丙酸(MPA)为稳定剂,在70℃的水相中合成了单分散的,粒子尺寸约为4 nm的ZnS∶Co半导体量子点.研究了稳定剂、Co2+掺杂剂及其掺杂量对掺杂量子点发光性能和结构的影响.XRD结果表明,Co2+离子主要掺杂在量子点表面,对主体ZnS晶格没有影响.当采用MPA为稳定剂,掺杂量为5%(摩尔分数)时,掺杂量子点的荧光发射强度最高;而同样掺杂量下采用CA为稳定剂时,量子点的荧光发射强度有所下降.循环伏安研究显示,与空白ZnS量子点相比,Co2+离子的掺杂在ZnS的禁带中形成杂质能级,相应地,ZnS∶Co量子点的吸收边发生红移.与未掺杂ZnS量子点相比,掺杂量子点具有较少的表面非辐射复合中心,因而荧光发射强度显著提高.  相似文献   

15.
Considering the rapidity and lesser sample amount required, the Fourier Transform Infrared Spectra (FTIR) was often used to quantitatively determine the rubber content of Russian dandelion, guayule, etc. This is because their chemical structure are cis-1,4-polyisoprene (CPI) which has a unique and isolate skeleton stretching vibration peak at 835 cm−1 band, and is convenient for determining the rubber content. However, this method is not suitable for Eucommia Ulmoides (EU) gum which will crystallize easily at room temperature due to the regular chemical structure of trans-1,4-polyisoprene (TPI), that will restrict the skeleton stretching vibration of TPI greatly. As a result, its FTIR spectrum only shows a very small peak at 845 cm−1 band hiding among a number of crystalline peaks around nearby, thus it cannot be used to determine the rubber content of Eucommia ulmoides oliv (E. ulmoids) directly. Actually, these crystalline peaks could be eliminated easily by elevating the temperature over 60 °C, and a unique and isolate skeleton stretching vibration characteristic band at 845 cm−1 was left alone in the TPI's FTIR spectrum which can be used expediently to determine the content of EU gum. At the present paper, the Variable Temperature Fourier Transform Infrared Spectroscopy (VTFTIR) was used to determine the rubber content of E. ulmoides. The results indicate that the rubber content of E. ulmoides samples (1–40, 5–35, 22–11) provided by Northwest Agriculture and Forestry University (NAFU) are 4.66%, 4.04%, 4.32% respectively, and the errors of average value were less than 5% compared with Soxhlet Extraction.  相似文献   

16.
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345?nm and 475?nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0?mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280?nM, with a detection limit of 2.2?nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.
Figure
Water soluble Mercaptoacetic acid (MAA)-capped CdS/ZnS core-shell quantum dots (QDs) was synthesised and characterised by using the UV-Visible absorption spectroscopy, Fluorescence spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM). These functionalised QDs are used as fluorescence probe for the determination of Hg(II) ions, based on the fluorescence quenching of QDs. A high optical selectivity and sensitivity toward Hg(II) ions was obtained at pH 7.4 of Tris–HCl buffer with a QDs concentration of 12.0?mgL?1. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs was linearly proportional to mercury ions concentration in the range 0.025?×?10?7 to 2.8?×?10?7?M with a detection limit of 2.2?×?10?9?M. The effect of common foreign ions on the fluorescence of the QDs was examined which confirmed high selectivity of this material towards Hg(II) ions. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using Atomic Absorption Spectroscopy. Therefore, these QDs are not only sensitive and of low cost, but also can be reliable for practical applications.  相似文献   

17.
Ni0.35Cu0.25Zn0.4Fe2O4 MNPs were synthesized using tragacanth gum as biotemplate and Metals nitrate as the metal source by the sol–gel method. The sample was characterized by powder X‐ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and energy dispersive X‐ray analysis (EDX). The nanoparticles exhibit ferromagnetic behaviour at room temperature, with a saturation magnetization of 52.76 emu/g and a coercivity of 80.14 Oe. Thereupon, Ni‐Cu‐Zn ferrite nanoparticles as an efficient catalyst was used for the synthesis of polyhydroquinoline derivatives via multi‐component reactions under microwave irradiation. Simple work‐up, mild reaction conditions, short reaction times, use of an economically convenient catalyst, and excellent product yields are the advantageous features of this method. The catalyst could easily be recycled and reused few times without noticeable decrease in catalytic activity.  相似文献   

18.
《印度化学会志》2021,98(8):100093
Quick cooking germinated brown rice (QCGBR) is a novel convenient food product with valuable health benefits. Different cooking and conditioning methods were studied for standardisation of its preparation process. Freshly harvested paddy of Prativa variety was milled in rubber roll sheller to get brown rice which was soaked in demineralised water at 30 ​± ​2 ​°C for 12 ​h followed by 24 ​h of germination in an incubator maintained at 27 ​± ​1 ​°C temperature and 85–90% relative humidity to obtain germinated brown rice. The germinated brown rice was immediately cooked using three different cooking methods such as atmospheric cooking at normal ambient pressure, pressure cooking with water in a domestic pressure cooker at 1 ​bar gauge pressure and pressure steaming (without water) with steam at 1 ​bar gauge pressure to predetermined cooking time. The cooked samples after washing were then conditioned by keeping them at 4 ​°C for 24 ​h (refrigerated storage) or −10 ​°C for 24 ​h (frozen storage) in a house hold refrigerator. The stored samples were taken out after 24 ​h and tempered for 1 ​h followed by drying in a tray dryer at 90 ​°C to obtain the quick cooking germinated brown rice. The samples obtained from different cooking and conditioning methods were analysed for cooking quality, physico-chemical parameters, damaged grain percentage, GABA content and sensory attributes to standardise the cooking and conditioning methods. Cooking time, water uptake ratio, solid loss and volume expansion ratio of quick cooking germinated brown rice varied significantly with cooking and conditioning methods of its preparation (p ​< ​0.05). Though frozen conditioning resulted in lowest cooking time, it was not accepted by the sensory panel due to high damaged grain percentage, distorted shape and softness after cooking. The QCGBR obtained by pressure cooking method followed by refrigerated conditioning resulted in highest sensory score.  相似文献   

19.
一锅法合成了镁掺杂的ZnO量子点,利用APTES对其进行表面包覆,并采用XRD、TEM、UV-Vis、PL和FTIR等对材料进行了表征。结果表明镁掺杂能明显增强荧光发光强度,在合适的掺杂浓度(30%)下其量子产率由11%增加到33%。通过APTES的表面包覆使镁掺杂的ZnO量子点具有良好的水溶性和荧光稳定性,可用于MCF-7细胞成像研究。  相似文献   

20.
ABSTRACT

The present study aimed that non-toxic, less expensive, easily available, safer to environment and previously unreported Eclipta prostrata leaf extract is used for the green synthesis of iron oxide nano particles. The iron oxide nanoparticles (NPs) were characterised by UV–visible, Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tannery effluents treated by photodegradation process and the removal efficiency of chemical oxygen demand (COD), biological oxygen demand (BOD) and sulphide were analysed. The maximum removal efficiency correlated with operating parameters was explained using response surface methodology with Boxmen Beckmen design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号