首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
在0 到12 mL·L-1 (体积分数φ=0.00%-1.20%) 范围内考察了不同H2S 浓度对25% (质量分数, w)MoO3/Al2O3和5% (w) CoO-25%MoO3/Al2O3催化剂甲烷化性能的影响. 结果表明, 5%CoO-25%MoO3/Al2O3的甲烷化活性随H2S浓度的增加单调上升, 而25%MoO3/Al2O3对H2S浓度并不敏感. 对比这两种催化剂发现, 只有在H2S浓度高于0.40% (φ) 时, 在25%MoO3/Al2O3中添加Co助剂才会有促进作用; H2S浓度低于0.40% (φ)时, Co助剂会抑制25%MoO3/Al2O3催化剂的甲烷化活性. 分别对反应前后的催化剂表征发现, H2S浓度的改变不会对两种催化剂的物理结构产生明显的影响, 而是通过影响催化剂表面的金属硫化物活性位来影响催化剂的甲烷化性能. 耐硫甲烷化反应体系中较高的硫含量下Co助剂才表现出对25%MoO3/Al2O3催化剂的促进作用. 该研究明确了在MoO3/Al2O3催化剂中添加Co助剂的硫化氢浓度范围, 为工业上选择合适的催化剂提供了依据.  相似文献   

2.
以LaCo1-xGaxO3为前驱体,还原后得到的Co/La2O3-La4Ga2O9复合氧化物催化剂,用于CO2加氢直接制乙醇。通过XRD、XPS、TPD和TEM等技术对催化剂结构进行了表征,采用微型固定床反应器在230-290℃、3 MPa、空速(GHSV)为3000 mL/(gcat·h)和H2/CO2进料物质的量比为3.0的条件下,考察了该Co/La-Ga-O复合氧化物用于CO2加氢制乙醇的催化性能。结果显示,该Co/La-Ga-O复合氧化物催化剂对生成乙醇具有很高的选择性。与LaCoO3相比,Ga的掺杂可抑制甲烷的形成,促进醇类(特别是乙醇)的生成。当Co/Ga比为7:3时,还原后的LaCo1-xGaxO3催化剂体现出最好的催化性能,CO2转化率为9.8%,总醇选择性达到74.7%,其中,液相产物中的乙醇质量分数可达到88.1%。基于实验结果推测,该催化剂上Co0和Coδ+的协同作用促使CO2选择性加氢生成乙醇。  相似文献   

3.
利用共沉淀法制备了具有介孔结构的Ce0.5Zr0.5O2固溶体载体,然后浸渍不同质量分数(10%、20%、30%)的活性组分钴,制备了系列Co/Ce0.5Zr0.5O2催化剂。利用N2物理吸附(BET)、X射线粉末衍射(XRD)、H2-程序升温还原(H2-TPR)、扫描电子显微镜(SEM) 、透射电子显微镜(TEM) 、 程序升温氧化(TPO)和热重(TG)等手段对制备和反应后的催化剂进行了表征,研究了它们对甲烷部分氧化制合成气反应的催化性能。研究结果表明,铈锆固溶体负载的钴比较容易被还原,该系列催化剂具有较高的活性和对H2及CO的选择性,且随Co含量的增加,催化剂的活性和对H2和CO的选择性得到提高的同时,也增强了催化剂的抗积炭性能。  相似文献   

4.
为有效改善催化剂酸性,利用共沉淀法对20V2O5/Al2O3催化剂载体进行Ce改性制备了不同CeO2质量分数的双功能催化剂,并对其催化甲醇选择性氧化制二甲氧基甲烷(DMM)的活性进行了研究。由X射线衍射(XRD)、扫描电子显微镜(SEM-EDS)、傅里叶红外光谱(FT-IR)、拉曼光谱(Raman)、H2程序升温还原(H2-TPR)及NH3程序升温脱附(NH3-TPD)表征结果证实,经Ce改性后在催化剂中有效引入了中强酸位点是DMM选择性提高的关键因素,同时也增强了钒氧化物与载体间的相互作用,降低了催化剂的氧化还原性。实验结果表明,当CeO2质量分数为8%时,催化剂表现出最佳的催化性能,反应温度对甲醇氧化产物有较大影响,低温更有利于DMM的生成。在反应温度为170 ℃时,经20V/8Ce-Al2O3催化,甲醇转化率为23.6%,DMM选择性达99.9%。催化剂经循环反应5次后DMM选择性依然为99.9%,研究为改善催化剂酸性提供了有价值的参考。  相似文献   

5.
采用水热法合成了一系列不同Cu-Zr物质的量比的Cu1-xZrxO2双金属氧化物,以此为催化剂,将生物柴油生产过程副产物甘油与温室气体CO2耦合反应制备精细化工产品碳酸甘油酯。结果表明,Zr掺杂量不同,催化剂对甘油羰基化反应效果呈现明显差距,最佳反应条件下,Cu0.99Zr0.01O2催化剂具有最佳催化性能,甘油转化率和碳酸甘油酯选择性分别达到64.1%和85.9%。并且发现与纯CuO和纯ZrO2相比,Cu1-xZrxO2复合氧化物在甘油与CO2耦合反应体系中表现出更强的催化活性,结合X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N2吸附-脱附、程序升温还原(H2-TPR)、程序升温脱附(TPD)、傅里叶变换红外光谱(FT-...  相似文献   

6.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

7.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

8.
分别以Al2O3-SiO2,Al2O3-TiO2,TiO2-SiO2和TiO2-ZrO2双金属氧化物为载体研究Ni基催化剂的愈创木酚加氢脱氧性能. 重点考察了催化剂载体、溶剂种类、反应温度和压力对愈创木酚转化率及产物选择性的影响,并对催化剂的抗积碳性能、重复利用性能和愈创木酚加氢脱氧反应机理进行了探讨. 通过BET(Brunauer-Emmett-Teller)比表面积、X射线衍射(XRD)、NH3程序升温脱附(NH3-TPD)和H2程序升温还原(H2-TPR)等表征手段对催化剂的比表面积、物相结构、表面酸性、可还原性能进行了表征. 结果表明,Ni/TiO2-ZrO2催化性能相对较优. 在300 ℃、初始氢压4 MPa、以十氢萘为溶剂的最佳反应条件下,愈创木酚的转化率为100%,环己烷选择性高达86.4%. 该催化剂还具有抗积碳性能,反应后的催化剂上仅检测到3.2%(质量分数)的积碳量.  相似文献   

9.
以γ-Al2O3为载体,采用共浸渍法制备了Sr-Co/Al2O3系列催化剂,研究了助剂Sr对Co/Al2O3催化剂上甲烷部分氧化(POM)制合成气反应的影响,并利用N2物理吸附、X射线衍射、H2-程序升温还原和热重等技术对催化剂的理化性质进行了表征。结果表明,未添加助剂的Co/Al2O3和800℃焙烧的Sr-Co/Al2O3催化剂在POM反应初期催化活性很低,然而,当添加Sr的质量分数高于2%时,催化剂表现出很好的催化活性和稳定性。焙烧后的新鲜催化剂上主要存在两类Co物种,一类是与载体相互作用较弱、易被H2还原为单质的Co3O4;另一类是与载体相互作用较强、难还原、无催化活性的CoAl2O4尖晶石。在焙烧过程中,Sr易形成Sr4Al14O25,从而削弱Co与Al2O3之间的相互作用,能在一定程度上抑制CoAl2O4物种的形成,提高催化剂的稳定性和活性。未添加Sr的Co/Al2O3在反应时易发生物相改变生成尖晶石,导致催化剂迅速失活;但当焙烧温度达到800℃时,添加有限量的Sr还是无法阻止CoAl2O4的产生。  相似文献   

10.
采用溶胶凝胶法和浸渍法制备了负载于蜂窝陶瓷上的Co/Fe/Al2O3/cordierite催化剂,在陶瓷管流动反应器上对其催化C3H6选择性还原NO的性能进行了测试。结果表明,该催化剂表现出最优脱硝性能,在模拟烟气条件下,当反应温度为550 ℃时可实现97%的脱硝效率。Co的引入可显著增强Fe/Al2O3/cordierite催化剂抗SO2和H2O的能力。在模拟烟气中同时引入0.02% SO2和3% H2O后,1.5Co/Fe/Al2O3/cordierite的脱硝性能受影响甚微,当反应温度高于500 ℃时1.5Co/Fe/Al2O3/cordierite催化C3H6还原NO的效率均可达到90%以上;相比之下,未经Co修饰的催化剂Fe/Al2O3/cordierite脱硝性能受到了严重的抑制,在整个反应温度区间(200-700 ℃)内,其催化C3H6还原NO的效率最高不足50%。XRD和SEM表征结果表明,经过适量的Co修饰后的1.5Co/Fe/Al2O3/cordierite表面变得更疏松,且形成了以钴铁和钴铝双金属氧化物为主要成分的球状晶粒。H2-TPR结果表明,相比于Fe/Al2O3/cordierite,1.5Co/Fe/Al2O3/cordierite有更好的低温还原性能。Py-FTIR结果表明,Co的引入可使催化剂表面的Lewis酸明显增加,且生成了Brønsted酸。N2吸附-脱附表征结果表明,Co可增大催化剂的比表面积。  相似文献   

11.
The effect of vanadium addition to Cu/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2Oa catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240 ℃, 3600 h-1 and a molar ratio of H2 to CO2 the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of Cu-V/γ-Al2O3 binary catalyst.  相似文献   

12.
丙烯是一种重要的化工原料, 其下游产品丰富, 用途广泛, 主要用于生产聚丙烯、丙烯腈、丙烯酸和丁醇等化工产品.丙烯的需求正在不断增长, 而传统的丙烯生产方法如蒸汽裂解和石油催化裂化, 存在反应温度高、积碳严重且丙烯收率较低等问题. 因此研制丙烷脱氢制取丙烯的高效催化剂尤为重要. 研究发现, 以 CO2作为温和氧化剂进行逆水气变换反应可有效促进丙烷脱氢. 催化剂主要由活性组分与载体构成, 本文选择可用于活化丙烷的钒作为主要活性组分. 钒氧化物在载体上的高度分散是提高丙烷脱氢反应活性的关键. MCM-41 拥有较大的比表面积和高度有序的介孔结构, 可更有效地分散活性位点. 本文采用一步法合成了不同钒含量的 nV-MCM-41 催化剂 (1.9-10.6 wt%), 并研究了其在以下条件下催化丙烷氧化脱氢制丙烯反应性能: 600 °C, 催化剂质量 0.2 g, 进料气体组成 C3H8/CO2/Ar (摩尔比) = 1/4/4, 进料气体总流量 15 mL/min. 其中 6.8V-MCM-41 催化剂具有最高的活性, 其初始丙烷转化率达 58%, 丙烯选择性达 92%, 远高于相似反应条件下早期研究的 nV-SBA-15 催化剂. 并在四次反应-再生循环中始终保持其原来的高反应活性. 本文借助于 N2吸附-脱附、拉曼光谱 (Raman)、X 射线光电子能谱 (XPS)和热重 (TG) 等手段探究了不同钒含量的 nV-MCM-41 催化剂在丙烷脱氢反应中催化性能差异的原因.氮气吸附-脱附结果表明, 所有催化剂都存在典型的高度有序的介孔结构, 并没有因为钒组分的掺杂而破坏. nV-MCM-41催化剂拥有较大比表面积,并随钒掺杂量的增加而减小. 其中,10.8V-MCM-41催化剂的比表面积急剧下降,可能是由于产生了结晶的 V2O5阻塞了孔道. Raman 结果表明, 当钒负载量超过 6.8 wt% 时, 出现了 V2O5的结晶峰. 另外根据单分散的四面体钒氧化物的特征峰面积发现, 6.8V-MCM-41 催化剂中钒物种分散度最高, 与其具有最高催化活性结果一致. XPS 结果也进一步证明 6.8V-MCM-41 钒物种的分散度最高. 在连续反应过程中 6.8V-MCM-41 催化剂失活较快,可归结于活性钒位点的还原与催化剂表面的积碳. 通过氧化再生, 可恢复催化剂活性, 并且在 4 次再生循环中始终保持其良好稳定的活性.  相似文献   

13.
采用两相法合成出含活性组分Au的辛烷基硫醇单层保护Au纳米粒子(C8AuNPs)的正己烷溶胶, 用“逐次浸润”法将C8AuNPs负载在γ-Al2O3上, 经真空干燥及活化处理制得Au/γ-Al2O3催化剂. 所制得的Au催化剂前体C8AuNPs/γ-Al2O3表面Au粒子平均粒径可控制在2-3 nm范围内, 且分布比较单一; 催化剂活性评价600 h后, 其表面Au的粒径仍主要分布在2-4 nm范围内; 真空干燥温度影响Au催化剂的粒子尺寸和催化活性, 随着真空干燥温度的提高, Au纳米粒子的粒径增大. 将所制备的催化剂用于低温CO氧化反应, 催化活性评价结果表明, 经25 ℃真空干燥制得的2.5%(质量分数, w)Au/γ-Al2O3具有较高的活性和长期稳定性, 其催化CO完全转化的最低温度为-19 ℃, 在15 ℃下CO完全转化时Au/γ-Al2O3的单程寿命至少900 h; 4.0%(w) Au/γ-Al2O3在15 ℃和进料中含水条件下对CO完全氧化的单程寿命不低于2000 h, 可见催化剂具有强的抗潮湿中毒特性. 综合上述实验结果, 讨论了影响Au/γ-Al2O3催化剂活性的可能因素.  相似文献   

14.
A series of Co/γ-Al2O3 catalysts were prepared with the impregnation .method and characterized by means of the BET specific surface area, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Laser Raman spectroscopy. The Co/γ-Al2O3 catalysts were activated by using H2, 20%CH4/H2 or CH4, re-spectively. There was no obvious difference between the activities of the Co/γ-Al2O3 catalyst activated by us-ing the different activation methods for methane dry reforming. The catalytic properties of the Co/γ-Al2O3 catalysts with different Co loadings were also investigated. The optimized Co loading for the Co/γ-Al2O3 cata-lyst pretreated with 20% CH4/H2 is around 12% (mass fraction).  相似文献   

15.
The present work tentatively investigated the effect of cobalt precursors (cobalt acetate and cobalt nitrate) on the physicochemical properties of CoO(x)/γ-Al(2)O(3) catalysts calcined in N(2). XRD, Raman, XPS, FTIR, and UV-vis DRS results suggested that CoO/γ-Al(2)O(3) was obtained from cobalt acetate precursors and CoO was dispersed on γ-Al(2)O(3) below its dispersion capacity of 1.50 mmol/(100 m(2) γ-Al(2)O(3)), whereas Co(3)O(4)/γ-Al(2)O(3) was obtained from cobalt nitrate precursors and Co(3)O(4) preferred to agglomerate above the dispersion capacity of 0.15 mmol/(100m(2) γ-Al(2)O(3)). Compared with Co(3)O(4)/γ-Al(2)O(3), CoO/γ-Al(2)O(3) catalysts were difficult to be reduced and easy to desorb oxygen species at low temperatures and presented high activities for CO oxidation as proved by H(2)-TPR, O(2)-TPD, and CO oxidation model reaction results. A surface incorporation model was proposed to explain the dispersion and reduction properties of CoO/γ-Al(2)O(3) catalysts.  相似文献   

16.
采用色谱-微反流动法反应装置考察了w%CuO/15%TiO2/γ-Al2O3催化剂对NO+CO的反应活性;催化剂经空气氛或氢气氛预处理后,NO转化率达100%的反应温度分别是325和275 ℃;XRD仅能检测到γ-Al2O3晶相,负载15%CuO后可以检测到微弱的CuO晶相;H2-TPR能检测到2个CuO的还原峰(α和β峰),将其归属于高度分散的CuO分别在裸露的γ-Al2O3和TiO2/γ-Al2O3载体上的还原;原位红外分析结果表明催化剂经空气氛或氢气氛预处理后,吸附NO+CO反应气后,反应的中间产物N2O出现的温度分别为200和150 ℃。  相似文献   

17.
Ag/La0.6Sr0.4MnO3基催化剂上CH3OH和CO的完全氧化   总被引:1,自引:1,他引:0  
合成了Ag/La0.6Sr0.4MnO3、Ag/La0.6Sr0.4MnO3/γ-AI2O3两毓催化剂,发现钙钛矿型La0.6Sr0.4MnO3对低浓度CH3OH或CO的完全氧化显示出相当高的催化活性,适量Ag对钙钛矿型La0.6S50.4MnO3基质的修使其对CH3OH或CO完全氧化催化活性获明显提高;在6%Ag/20%La0.6Sr0.4MnO3/γ-AI2O3催化剂 ,CH3OH完全氧化的T  相似文献   

18.
用微型催化反应装置评价, 并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3, PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能. 发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性. 实验结果表明, 纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原, 导致铂金属分散度和催化剂的丙烷脱氢活性较低. 用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用, 提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性. 并且, 积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度, 故具有较高的丙烷脱氢反应稳定性. PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能可能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关, 而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

19.
用微型催化反应装置结合吡啶吸附 红外光谱、热重、氢化学吸附和程序升温等还原手段,研究了添加碱土金属离子助剂对负载型PtSn/γ-Al2O3催化剂长链烷烃(C10~13)脱氢反应性能的影响。结果表明,碱土金属助剂的引入可以降低催化剂积炭量、提高催化剂铂金属表面裸露度,从而提高催化剂脱氢反应稳定性。但强碱性的碱土金属助剂如Ba2+的引入增强了锡与载体之间的相互作用,减弱了锡与铂之间的相互作用, 导致反应后催化剂铂金属表面裸露度下降,故PtSnBa/γ-Al2O3催化剂脱氢活性较低。  相似文献   

20.
以γ-Al2O3为载体,钼酸铵为氧化钼前驱体,采用在N2-H2气氛下的程序升温还原氮化反应,制备β-Mo2N0.78/γ-Al2O3催化剂,以噻吩为模型化合物,考察了该催化剂的加氢脱硫反应性能,以及反应温度、氢还原预处理和钴、镍助剂的引入等因素对催化剂活性的影响。结果表明,在320 ℃~400 ℃之间,随着反应温度的升高,催化剂的活性逐渐增加;预还原则降低了催化剂的活性;添加钴、镍均在一定负载量范围内可以改善β-Mo2N0.78/γ-Al2O3催化剂的加氢脱硫活性,但镍对催化剂活性的影响要小于钴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号