首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic organic transformation is an efficient, energysaving and environmentally friendly strategy for organic synthesis. The key to developing a green and economical route for photocatalytic organic synthesis lies in the construction of optimal photocatalysts. Covalent organic frameworks(COFs), a kind of porous crystalline materials with characteristics of high surface area, excellent porosity, and superior thermo-chemical stability, have driven people to explore their potential as photocatalysts in photocatalytic organic transformations by virtue of their structural versatility and designability. Furthermore, the insolubility of COFs makes it possible to recycle the catalysts by simple technical means. In recent years, researchers have made great efforts to develop both the design strategies of COFs as heterogeneous photocatalysts and the reaction types of photocatalytic organic transformations. In this review, we focus on the design of COF-based photocatalytic materials and analyze the influence factors of photocatalytic performance. Moreover, we summarize the application of COFbased photocatalysts in photocatalytic organic conversion. Finally, the perspectives on new opportunities and challenges in the field are discussed.  相似文献   

2.
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.  相似文献   

3.
Imine-linked covalent organic frameworks (COFs) have been extensively studied in photocatalysis because of their easy synthesis and excellent crystallinity. The effect of imine-bond orientation on the photocatalytic properties of COFs, however, is still rarely studied. Herein, we report two novel COFs with different orientations of imine bonds using oligo(phenylenevinylene) moieties. The COFs showed similar structures but great differences in their photoelectric properties. COF-932 demonstrated a superior hydrogen evolution performance compared to COF-923 when triethanolamine was used as the sacrificial agent. Interestingly, the use of ascorbic acid led to the protonation of the COFs, further altering the direction of electron transfer. The photocatalytic performances were increased to 23.4 and 0.73 mmol g−1 h−1 for protonated COF-923 and COF-932, respectively. This study provides a clear strategy for the design of imine-linked COF-based photocatalysts and advances the development of COFs.  相似文献   

4.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

5.
Water scarcity is becoming an increasingly pressing issue due to global population growth and industrialization. One effective approach to addressing this issue is sorption-based atmospheric water harvesting (SAWH). Covalent organic frameworks (COFs) are a type of porous crystalline material that have emerged as promising sorbents for water harvesting due to their high surface area, tunable pore size, and customizable pore chemistry. In this mini-review, we provide an overview of the different types of COFs, their structural characteristics, and the diverse linkage chemistries used to construct them. Then, we summarize recent advances in using COF-based sorbents for atmospheric water harvesting, including strategies for controlling sorption properties and optimizing performance in terms of thermodynamics and dynamics. Finally, we discuss prospects and challenges associated with improving the efficiency of COF-based SAWH systems.  相似文献   

6.
Nitrogen-heterocycle-based covalent organic frameworks (COFs) are considered promising candidates for the overall photosynthesis of hydrogen peroxide (H2O2). However, the effects of the relative nitrogen locations remain obscured and photocatalytic performances of COFs need to be further improved. Herein, a collection of COFs functionalized by various diazines including pyridazine, pyrimidine, and pyrazine have been judiciously designed and synthesized for photogeneration of H2O2 without sacrificial agents. Compared with pyrimidine and pyrazine, pyridazine embedded in TpDz tends to stabilize endoperoxide intermediate species, leading toward the more efficient direct 2e- oxygen reduction reaction (ORR) pathway. Benefiting from the effective electron-hole separation, low charge transfer resistance, and high-efficiency ORR pathway, an excellent production rate of 7327 μmol g−1 h−1 and a solar-to-chemical conversion (SCC) value of 0.62 % has been achieved by TpDz, which ranks one of the best COF-based photocatalysts. This work might shed fresh light on the rational design of functional COFs targeting photocatalysts in H2O2 production.  相似文献   

7.
Covalent organic frameworks (COFs) are highly desirable for achieving high-efficiency overall photosynthesis of hydrogen peroxide (H2O2) via molecular design. However, precise construction of COFs toward overall photosynthetic H2O2 remains a great challenge. Herein, we report the crystalline s-heptazine-based COFs (HEP-TAPT-COF and HEP-TAPB-COF) with separated redox centers for efficient H2O2 production from O2 and pure water. The spatially and orderly separated active sites in HEP-COFs can efficiently promote charge separation and enhance photocatalytic H2O2 production. Compared with HEP-TAPB-COF, HEP-TAPT-COF exhibits higher H2O2 production efficiency for integrating dual O2 reduction active centers of s-heptazine and triazine moieties. Accordingly, HEP-TAPT-COF bearing dual O2 reduction centers exhibits a remarkable solar-to-chemical energy efficiency of 0.65 % with a high apparent quantum efficiency of 15.35 % at 420 nm, surpassing previously reported COF-based photocatalysts.  相似文献   

8.
As newly emerged crystalline porous materials, covalent organic frameworks (COFs) possess fascinating structures and some specific features such as modularity, crystallinity, porosity, stability, versatility, and biocompatibility. Besides adsorption/separation, sensing, catalysis, and energy applications, COFs have recently shown a promise in biomedical applications. This contribution provides an overview of the recent developments of COF-based medicines in cancer therapeutics, including drug delivery, photodynamic therapy (PDT), photothermal therapy (PTT), and combined therapy. Furthermore, the major challenges and developing trends in this field are also discussed. These recent developments are summarized and discussed to help encourage further contributions in this emerging and promising field.  相似文献   

9.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   

10.
Covalent organic frameworks(COFs) are a class of porous crystalline polymers that have been widely investigated in various fields, including energy storage, photo/electrocatalysis, drug delivery. The covalent-bond interconnection allows COFs extraordinary chemical and thermal stability, and the porous structure ensures a high ion-diffusion coefficient. These merits compensate for the drawbacks of organic electrodes that are easy to dissolve and have low charge conductivity, and promote the development of novel electrode materials with excellent performance, environmental friendliness, and low price. However, the application of COFs also encountered many problems, such as poor electronic conductivity due to the large band gap. Moreover,in some three-dimensional(3D) COFs and stacked two-dimensional(2D) COFs, the huge crystal structure, aligned ultralong channels, and numerous crystal defects usually impede ion transport, and the large molecular weights of COFs generally decrease the specific capacities. These issues are urgently needed to be solved. Here in this review, we summarize the latest progress, core challenges and coping strategies concerning with the use of COFs in alkali-metal ion batteries, discuss the impact of material structure on energy storage, and propose strategies for the construction of high-performance COF-based electrodes.  相似文献   

11.
The development of covalent organic framework (COF) sonosensitizers with intrinsic sonodynamic effects is highly desirable. However, such COFs are generally constructed using small-molecule photosensitizers. Herein, we report that the reticular chemistry-based synthesis of COFs from two inert monomers yields a COF-based sonosensitizer (TPE-NN) with inherent sonodynamic activity. Subsequently, a nanoscale COF TPE-NN is fabricated and embedded with copper (Cu)-coordinated sites to obtain TPE-NN-Cu. Results show that Cu coordination can enhance the sonodynamic effect of TPE-NN, whereas ultrasound (US) irradiation for sonodynamic therapy can augment the chemodynamic efficacy of TPE-NN-Cu. Consequently, TPE-NN-Cu upon US irradiation shows high-performance anticancer effects based on mutually reinforced sono-/chemo-nanodynamic therapy. This study reveals the backbone-originated sonodynamic activity of COFs and proposes a paradigm of intrinsic COF sonosensitizers for nanodynamic therapy.  相似文献   

12.
Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices.

This study highlights the importance of mid-infrared spectral signatures and discusses the fundamental mechanisms driving charge transport in COFs. Our analysis can hopefully guide the rational design of new COFs yielding higher conductivities.  相似文献   

13.
Membrane technology is of particular significance for the sustainable development of society owing to its potential capacity to tackle the energy shortage and environmental pollution. Membrane materials are the core part of membrane technology. Researchers have always been pursuing predictable structures of advanced membrane materials, which provides a possibility to fully unlock the potential of membranes. Covalent organic frameworks(COFs), with the advantage of controllable pore microenvironment, are considered to be promising candidates to achieve this design concept. The customizable function of COF membranes through pore engineering does well in the enhancement of selective permeability performance, which offers COF membranes with great application potentials in separation and transportation fields. In this context, COF-based membranes have been developed rapidly in recent years. Herein, we present a brief overview on the strategies developed for pore engineering of COF membranes in recent years, including skeleton engineering, pore surface engineering, host-guest chemistry and membrane fabrication. Moreover, the features of transmission or separation of molecules/ions based on COF membranes and corresponding applications are also introduced. In the last part, the challenges and prospects of the development of COF membranes are discussed.  相似文献   

14.
The nano-hybrids were prepared by in situ polymerization of redox active TpPa-COFs together with single-walled carbon nanotubes (SWCNTs) under solvothermal conditions. The improvement of electrochemical performances of covalent organic frameworks (COFs) wires incorporated with SWCNTs makes the structure a guidance for application of COFs in electrical energy storage.  相似文献   

15.
Covalent organic frameworks (COFs) are known to be a promising class of materials for a wide range of applications, yet their poor solution processability limits their utility in many areas. Here we report a pore engineering method using hydrophilic side chains to improve the processability of hydrazone and β-ketoenamine-linked COFs and the production of flexible, crystalline films. Mechanical measurements of the free-standing COF films of COF-PEO-3 (hydrazone-linked) and TFP-PEO-3 (β-ketoenamine-linked), revealed a Young's modulus of 391.7 MPa and 1034.7 MPa, respectively. The solubility and excellent mechanical properties enabled the use of these COFs in dielectric devices. Specifically, the TFP-PEO-3 film-based dielectric capacitors display simultaneously high dielectric constant and breakdown strength, resulting in a discharged energy density of 11.22 J cm−3. This work offers a general approach for producing solution processable COFs and mechanically flexible COF-based films, which hold great potential for use in energy storage and flexible electronics applications.  相似文献   

16.
Covalent organic frameworks (COFs) have gained significant attention as key photocatalysts for efficient solar light conversion into hydrogen production. Unfortunately, the harsh synthetic conditions and intricate growth process required to obtain highly crystalline COFs greatly hinder their practical application. Herein, we report a simple strategy for the efficient crystallization of 2D COFs based on the intermediate formation of hexagonal macrocycles. Mechanistic investigation suggests that the use of 2,4,6-triformyl resorcinol (TFR) as the asymmetrical aldehyde build block allows the equilibration between irreversible enol-to-keto tautomerization and dynamic imine bonds to produce the hexagonal β-ketoenamine-linked macrocycles, the formation of which could provide COFs with high crystallinity in half hour. We show that COF-935 with 3 wt % Pt as cocatalyst exhibit a high hydrogen evolution rate of 67.55 mmol g−1 h−1 for water splitting when exposed to visible light. More importantly, COF-935 exhibits an average hydrogen evolution rate of 19.80 mmol g−1 h−1 even at a low loading of only 0.1 wt % Pt, which is a significant breakthrough in this field. This strategy would provide valuable insights into the design of highly crystalline COFs as efficient organic semiconductor photocatalysts.  相似文献   

17.
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.  相似文献   

18.
Benefiting from the excellent structural tunability, robust framework, ultrahigh porosity, and rich active sites, covalent organic frameworks (COFs) are widely recognized as promising photocatalysts in chemical conversions, and emerged in the hydrogen peroxide (H2O2) photosynthesis in 2020. H2O2, serving as an environmental-friendly oxidant and a promising liquid fuel, has attracted increasing researchers to explore its potential. Over the past few years, numerous COFs-based photocatalysts are developed with encouraging achievements in H2O2 production, whereas no comprehensive review articles exist to summarize this specific and significant area. Herein we provide a systematic overview of the advances and challenges of COFs in photocatalytic H2O2 production. We first introduce the priorities of COFs in H2O2 photosynthesis. Then, various strategies to improve COFs photocatalytic efficiency are discussed. The perspective and outlook for future advances of COFs in this emerging field are finally offered. This timely review will pave the way for the development of highly efficient COFs photocatalysts for practical production of value-added chemicals not limited to H2O2.  相似文献   

19.
Covalent organic frameworks(COFs) featuring designable nanoporous structures exhibit many fascinating properties and have attracted great attention in recent years for their intriguing application potential in sensing, catalysis, gas storage and separation, optoelectronics, etc. Rational design of twodimensional(2D) COFs through judiciously selecting chemical building blocks is critical to acquiring predetermined skeleton and pore structures. In this perspective, we review the reticular synthesis of 2D COFs with different topologies, highlighting the important role of various characterization techniques in crystal structure determination. 2D COFs with simple tessellations have been widely investigated, while the synthesis of complex tessellated COFs is still a great challenge. Some recent examples of 2D COFs with novel topological structures are also surveyed.  相似文献   

20.
共价有机框架材料在多相催化领域的研究进展(英文)   总被引:1,自引:0,他引:1  
胡慧  闫欠欠  格日乐  高艳安 《催化学报》2018,39(7):1167-1179
共价有机框架(COFs)材料是近年来在拓扑学基础上发展起来的一类新型有机多孔聚合物,是有机单体通过可逆共价键连接而形成的晶型多孔材料,具有拓扑结构"可设计"、比表面积大、结构规整、孔道均一、孔径可调节以及易于修饰和功能化等优点.与金属有机框架材料(MOFs)相比,由于COFs是以共价键连接形成空间网络结构,具有较好的热稳定性和化学稳定性,又被称为"有机分子筛".COFs的构筑单体为有机小分子,有机小分子来源广泛而且种类繁多,使得构筑单体多样化,便于通过构筑单体来调控目标材料的结构和功能.自2005年首次报道以来,COFs以其独特的结构和优越的性能,吸引了广大科研工作者的极大兴趣,对其结构设计、可控合成、结构解析以及功能探索成为了研究热点,在气体吸附与分离、光电材料等领域展现出了广阔的应用前景.特别是在催化领域,由于COFs材料的多孔性、敞开的孔道结构、良好的稳定性以及易于修饰的特点,采用COFs作为催化剂以及催化剂载体受到了人们普遍的关注.作为催化剂,COFs可分为本征型催化剂和负载型催化剂.本征型催化剂的设计方法是基于"自下而上"策略将催化活性中心嵌入材料骨架之中;负载型催化剂的设计方法是以COFs为载体,通过后修饰方式负载金属颗粒或离子来构建多相催化剂.本征型COFs催化剂是在分子水平上引入催化活性中心,具有活性位点均匀分散、数量可控的特点,而且COFs规整均一的孔道结构有利于底物的传质,也为择形催化提供了可能;负载型催化剂通过后修饰方式引入催化活性中心,由于COFs以共价键连接,催化剂稳定性较高.COFs载体具有较大的比表面积,使得催化活性位点分散性好,也有利于底物与催化活性位点的结合.本文综述了COFs作为多相催化剂在催化领域的发展状况,按照COFs引入催化活性位点的类别,如单催化位点、双催化位点以及负载的金属纳米粒子进行了细致的阐述,重点讨论了COFs催化剂的设计理念、制备方式、功能化策略、材料的稳定性、催化活性以及选择性等内容.此外,对COFs作为光催化剂以及电催化剂方面的研究也进行了详细的介绍.最后,我们讨论了COFs在未来催化领域所面临的问题及挑战,并展望了COFs在超分子催化以及酶催化等方面的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号