首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of substrate temperature and N2/Ar flow ratio on the stoichiometry, structure and hardness of TaNx coatings prepared on (111) Si substrates by DC reactive sputtering was investigated. For the structural, chemical and morphological analysis, X‐ray diffraction (XRD), Auger electron scanning and atomic force microscopy were respectively used. Hardness values of thin films were determined using the work of indentation model from nanoindentation measurements. TaN stoichiometric coatings were obtained for samples deposited at room temperature. The stoichiometric TaN phase was not obtained by increasing the temperature up to 773 K, even when increasing the N2/Ar flow ratio. Even when a saturation in nitrogen content was achieved, nitrogen vacancies are still present in those samples. For coatings prepared at 773 K and low N2/Ar flow ratio, a phase mixture between TaNx and cubic α‐Ta was observed, while a cubic structure δ‐TaN was formed by increasing the N2/Ar flow ratio. A maximum in hardness and (38 GPa) was obtained for the sample deposited at 773 K and a N2/Ar flow ratio of 0.2, which presented a δ‐TaN cubic crystalline structure and a roughness value of 1.6 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.

A mixture of Ta and 25 mass% Cu elemental powders was subjected to mechanical alloying in a high-energy ball mill up to 60 h. The results are composite particles formed by nanocrystalline Cu and amorphous Ta phases. Thermal stability of amorphous was investigated by DSC. The XRD, FTIR and EDX analyses of Ta–25 mass% Cu powder milled for 60 h performed after DSC at 800 and 900 °C have revealed large amounts of Ta nitride and Ta oxides even though the milling process was done in Ar atmosphere. This is due to high reactivity of Ta fine particles with oxygen and nitrogen from air. During manipulations of the powder (taking samples from vials and its investigation), the adsorption phenomena on its surface occur, and both surface-adsorbed N2 and O2 are processed with powder and embedded in it. While heating of Ta–25% Cu milled powder in DSC, nitrogen and oxygen diffusion into tantalum is activated, and Ta2N and TaO2/Ta2O5 compound forms.

  相似文献   

3.
The nitrogen content in tantalum nitride (TaNx) thin films, where x indicates that TaNx is not generally stoechiometric, can be measured directly by XPS. This is the purpose of the present study. However, the XPS spectra of TaNx present electron energy loss spectroscopy (EELS) peaks that lead to a complex peak fitting, particularly for self‐passivated thin films. A complete peak fitting procedure based upon Tougaard's background, the Doniach‐Sunjic Function and EELS peaks, is presented. It is applied to two self‐passivated TaNx thin films elaborated by reactive sputtering and presenting a different nitrogen content. The physical properties of these surfaces are interpreted in terms of Ta 4f7/2 chemical states directly dependent on the nitrogen content. The main results are discussed and improvements are proposed to the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The direct fluorination of intimately mixed niobium and tantalum powders gives a range of mixed‐metal pentafluorides [NbxTa4‐xF20] (x = 1 2 , 2 3 , 3 4 ) as discreet species isostructural with tantalum pentafluoride (x = 0 1 ). The crystal structures of 1–4 are indistinguishable by X‐ray crystallography. Complex 1 crystallizes in the monoclinic space group C2/m with a = 9.5462(13), b = 14.3578(19), c = 5.0174(7) Å, β = 97.086(2)°, Z = 2. The geometry about the tantalum atom is distorted octahedral with 2 short and 2 slightly longer Ta‐Fterminal, and 2 Ta‐Fbridging distances. The angles at the bridging fluorine atoms are 172.9(5)°.  相似文献   

5.
Adsorption and activation of dinitrogen (N2) is an indispensable process in nitrogen fixation. Metal nitride species continue to attract attention as a promising catalyst for ammonia synthesis. However, the detailed mechanisms at a molecular level between reactive nitride species and N2 remain unclear at elevated temperature, which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system. Herein, the 14N/15N isotopic exchange in the reaction between tantalum nitride cluster anions Ta314N3- and 15N2 leading to the regeneration of 14N2/14N15N was observed at elevated temperature (393-593 K) using mass spectrometry. With the aid of theoretical calculations, the exchange mechanism and the effect of temperature to promote the dissociation of N2 on Ta3N3? were elucidated. A comparison experiment for Ta314N4-/15N2 couple indicated that only desorption of 15N2 from Ta314N415N2- took place at elevated temperature. The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species. This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.  相似文献   

6.
《Solid State Sciences》2004,6(1):101-107
TaON and Ta3N5 thin films of different thicknesses were prepared by pulsed laser deposition of tantalum oxide followed by ex situ thermal nitridation under ammonia. The nitridation was carried out in flowing gas in the 600–800 °C temperature range. The dependence of tantalum oxynitride and nitride crystalline phases formation on nitridation reaction parameters was investigated. Structural and microstructural characteristics were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

7.
Treatment of tetraethylammonium hexacarbonyltantalate, [Et4N][Ta(CO)6], with 1.1 equivalents of molecular iodine (I2) in tetrahydrofuran (THF) at 200 K, followed by the addition of 6.0 equivalents of 2,6‐diisopropylphenyl isocyanide (CNDipp) and slow warming to 293 K over a 24 h period gave the tantalum(I) iodide derivative hexakis(2,6‐diisopropylphenyl isocyanide‐κC)iodidotantalum(I), [TaI(C13H17N)6] or TaI(CNDipp)6, 1 . Recrystallization of this substance from pentane provided deep‐red nearly black parallelepipeds of the product, which was characterized by single‐crystal X‐ray diffraction. Addition of 1 in THF at 200 K to a suspension of an excess (5.8 equivalents) of caesium graphite (CsC8), followed by warming, filtration, and solvent removal, afforded a dark‐green oily solid of unknown composition, from which several red–brown rhombohedral plates of the ditantalum salt heptakis(2,6‐diisopropylphenyl isocyanide‐κC)tantalum hexakis(2,6‐diisopropylphenyl isocyanide‐κC)tantalate, [Ta(C13H17N)7][Ta(C13H17N)6] or [Ta(CNDipp)7][Ta(CNDipp)6], 2 , were harvested. Salt 2 is a unique substance, as it is the only known example of a salt containing a homoleptic cation, [MLx]+, and a homoleptic anion, [MLy]?, with the same transition metal and π‐acceptor ligand L. In solution, 2 undergoes full comproportionation to afford the recently reported 17‐electron paramagnetic zerovalent tantalum complex Ta(CNDipp)6, the only known isolable TaL6 complex of Ta0.  相似文献   

8.
Summary We prepared thin films of tantalum oxide on SiO2/Si substrates by thermal oxidation of tantalum. The different oxide layers and their interfaces were characterized by SIMS, AES, and XPS. Characteristic structures were obtained after different oxidation procedures. The comparative discussion of AES and SIMS depth profiles makes possible an unequivocal characterization of the reactive interfaces between the oxides of Ta and Si. The Ta2O5/SiO2 interface in particular shows non-stoichiometries which depend on the oxidation procedures and which determine the performance characteristics of pH-sensitive Ta2O5 field-effect transistors.
Tiefenprofile von Ta2O3/SiO2/Si-Strukturen: Eine kombinierte Untersuchung mit Röntgen-Photoemissions-, Auger-Elektronen- und Sekundär-Ionen-Massen-Spektrometrie
  相似文献   

9.
N-doped NaTaO3 catalysts were synthesized via a sol–gel method followed by a subsequent calcination process under NH3 atmosphere. The as prepared samples were characterized by XPS, XRD, UV–Vis DRS, and BET analyses. All XRD peaks of the sample calcined at 900 °C matched with pure perovskite NaTaO3 while peaks of TaON and Na2Ta4O11 were found for that calcined at 1,000 °C. The DRS of samples shown cutoff edge has red shifted, from 315 nm of pure to 391 nm of N-doped NaTaO3. N-doping helps to narrow the band gap, and the prepared sample was visible light sensitive. The XPS spectrum of Ta4p3&N1s shown two new peaks at 398.3 and 401.4 eV appear in the N-doped sample corresponding to Ta–N bonds and adsorption nitride, respectively. Photocatalytic activity of the catalysts was evaluated using Rhodamine B dye. The result demonstrated that the sample calcined under NH3 had a higher photocatalytic activity than that of P25 under visible light. The NaTaO3/TaON heterojunction played an important role on promoting photoactivity.  相似文献   

10.
We demonstrate the utilization of parallel angle-resolved X-ray photoelectron spectroscopy (pAR-XPS) as a useful tool to analyze ultrathin sputtered tantalum nitride (TaN) thin films in complementary metal-oxide-semiconductor (CMOS) trenches. The chemical composition of TaN was estimated by pAR-XPS using a Theta 300i from Thermo Fischer. An improved lateral resolution was achieved by analyzing periodic structures. The XPS data was correlated with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. The results show that the nitrogen content in the TaN thin films was about 6% higher at the sidewall compared with the top and bottom of the trench.  相似文献   

11.
Hexakis(2,6‐diisopropylphenylisocyanide)tantalum is the first isocyanide analogue of the highly unstable Ta(CO)6 and represents the only well‐defined zerovalent tantalum complex to be prepared by conventional laboratory methods. Two prior examples of homoleptic Ta0 complexes are known, Ta(benzene)2 and Ta(dmpe)3, dmpe=1,2‐bis(dimethylphosphano)ethane, but these have only been accessed via ligand co‐condensation with tantalum vapor in a sophisticated metal‐atom reactor. Consistent with its 17‐electron nature, Ta(CNDipp)6 undergoes facile one‐electron oxidation, reduction, or disproportionation reactions. In this sense, it qualitatively resembles V(CO)6, the only paramagnetic homoleptic metal carbonyl isolable under ambient conditions.  相似文献   

12.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   

13.
The synthesis and structural characterization of new tantalum(V) compounds containing a single hydrazido(I) ligand are reported. Hydrazinolysis of TaCl(NMe2)4 using trimethylsilyl(dimethyl)hydrazine affords the compound TaCl(NMe2)3[N(TMS)NMe2] in essentially quantitative yield. Metathetical replacement of the chloride ligand in TaCl(NMe2)3[N(TMS)NMe2] by LiNMe2 gives the all-nitrogen coordinated compound Ta(NMe2)4[N(TMS)NMe2]. VT 1H NMR studies support the existence of low-energy pathways involving rotation about the Ta–N bonds of the ancillary amido and hydrazido ligands in both hydrazido-substituted compounds. X-ray crystallographic analyses confirm the octahedral disposition about the tantalum metal in TaCl(NMe2)3[N(TMS)NMe2] and Ta(NMe2)4[N(TMS)NMe2] and the presence of an η2-hydrazido(I) ligand. Preliminary data using Ta(NMe2)4[N(TMS)NMe2] as an ALD precursor for the preparation of tantalum nitride and tantalum oxide thin films are presented.  相似文献   

14.
The title compound, (C4H12N)4[Ta6Cl18]Cl, crystallizes in the cubic space group . The crystal structure contains two different types of coordination polyhedra, i.e. four tetrahedral [(CH3)4N]+ cations and one octahedral [(Ta6Cl12)Cl6]3− cluster anion, and one Cl ion. The presence of three different kinds of Cl atoms [bridging (μ2), terminal and counter‐anion] in one mol­ecule makes this substance unique in the chemistry of hexanuclear halide clusters of niobium and tantalum. The Ta6 octahedron has an ideal Oh symmetry, with a Ta—Ta interatomic distance of 2.9215 (7) Å.  相似文献   

15.
Uniform‐sized silica nanospheres (SNSs) assembled into close‐packed structures were used as a primary template for ordered porous graphitic carbon nitride (g‐C3N4), which was subsequently used as a hard template to generate regularly arranged Ta3N5 nanoparticles of well‐controlled size. Inverse opal g‐C3N4 structures with the uniform pore size of 20–80 nm were synthesized by polymerization of cyanamide and subsequent dissolution of the SNSs with an aqueous HF solution. Back‐filling of the C3N4 pores with tantalum precursors, followed by nitridation in an NH3 flow gave regularly arranged, crystalline Ta3N5 nanoparticles that are connected with each other. The surface areas of the Ta3N5 samples were as high as 60 m2 g−1, and their particle size was tunable from 20 to 80 nm, which reflects the pore size of g‐C3N4. Polycrystalline hollow nanoparticles of Ta3N5 were also obtained by infiltration of a reduced amount of the tantalum source into the g‐C3N4 template. An improved photocatalytic activity for H2 evolution on the assembly of the Ta3N5 nanoparticles under visible‐light irradiation was attained as compared with that on a conventional Ta3N5 bulk material with low surface area.  相似文献   

16.
Electropolymerization of pyrrole on tantalum (Ta) electrodes was carried out in buffer solutions (0.04 M phosphoric acid, 0.04 M acetic acid, 0.04 M boric acid and 0.2 M sodium hydroxide) containing 0.1 M sodium ptoluenesulfonate (TsONa) under galvanostatic conditions and it was found that a polypyrrole (PPy) and a tantalum oxide (Ta2O5) layer are formed on a Ta electrode by an electrochemical oxidation process. The conditions of this simultaneous formation were studied in respect to current density (id), pyrrole concentration ([Py]), pH and the amount of electricity. Under certain conditions ([Py] = 0.25 M, pH = 1.8, id = 10–20 mA cm?2, the amount of electricity = 1 C), 6–8 μm thick PPy films were efficiently formed on homogeneous 30–50 nm thick Ta2O5 layers. The PPy film showed a high electrical conductivity (110 s cm?1), adhered well and covered the Ta2O5 layer. The resulting PPy/Ta2O5/Ta system is therefore proved to have excellent properties as a capacitor.  相似文献   

17.
The crystal structure of the isotypic compounds NbCrN and Ta1?x Cr1+x N has been determined from X-ray powder patterns. The tetragonal unit cell contains 12 atoms and belongs to the space group P4bm. The lattice parameters are for NbCrN:a=4.283 Å,c=7.360 Å, for Ta0.8Cr1.2Na=4.249 Å,c=7.334 Å. The structure is characterized by relatively close packed double layers of Nb(Ta)-atoms and Cr-atoms parallel to the base plane. The nitrogen atoms are within the octahedral interstitial sites of the niobium(tantalum) double layer.  相似文献   

18.
KSbWO6 was prepared by sol‐gel method. N‐doped KSbWO6 (KSbWO6–xNx) was obtained by heating KSbWO6 and urea at 400 °C. Both the compounds are characterized by powder X‐ray diffraction (XRD), TEM, SEM‐EDS, X‐ray photo electronic spectroscopy (XPS), and UV/Vis diffuse reflectance spectroscopy (UV‐DRS). A shift in the peak positions of powder XRD and XPS spectra was observed. The band gap energy (Eg) of KSbWO6 and N‐doped KSbWO6 was obtained from their diffused reflectance spectra.Eg was reduced from 3.17 eV to 2.56 eV upon nitrogen doping in KSbWO6. The reduction of the Eg is attributed to the lifting of valence band of N‐doped KSbWO6, due to the mixing of O 2p states with N 2p states. The photocatalytic activity of both the samples was studied by degradation of methylene blue (MB). The nitrogen doped KSbWO6 shows higher photocatalytic activity compared to that of KSbWO6.  相似文献   

19.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

20.
《Electroanalysis》2017,29(3):778-786
NiCo2O4/CNT nanocomposite films were fabricated by in‐situ growing ultrafine NiCo2O4 nanoparticles on acid‐modified carbon nanotube (CNT) films. The effects of CNT‐film pretreatment were investigated thoroughly by various characterization outfits including Fourier Transform Infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, RTS‐9 four‐point probes resistivity measurement system, X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and CHI660D electrochemical workstation. These results suggested that carbon nanotubes were uniformly wrapped by NiCo2O4 nanoparticles forming a hierarchical core‐shell structure. And the crystallinity, conductivity of the CNTs and detail structure (both morphology and size) of the NiCo2O4 nanoparticles varied with prolonged acid treatment time which resulted in increased functional groups and defects on CNT films and further affected the electrochemical properties. The composite film composed of the CNT film pretreated by mixed acid for 12 h exhibited excellent electrochemical properties: 828 F/g at 1 A/g and 656 F/g at 20 A/g, and maintained over 99 % of its capacitance after 3000 cycles of charge/discharge at 5 A/g. Acid treatment for either too long or too short is detrimental to the electrochemical properties of the composite films. Such work should be of fundamental importance for tailoring electrochemical properties by elaborate design of acid treatment on CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号