首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ta3N5 is a promising photoanode candidate for photoelectrochemical water splitting, with a band gap of about 2.1 eV and a theoretical solar‐to‐hydrogen efficiency as high as 15.9 % under AM 1.5 G 100 mW cm?2 irradiation. However, the presently achieved highest photocurrent (ca. 7.5 mA cm?2) on Ta3N5 photoelectrodes under AM 1.5 G 100 mW cm?2 is far from the theoretical maximum (ca. 12.9 mA cm?2), which is possibly due to serious bulk recombination (poor bulk charge transport and charge separation) in Ta3N5 photoelectrodes. In this study, we show that volatilization of intentionally added Ge (5 %) during the synthesis of Ta3N5 promotes the electron transport and thereby improves the charge‐separation efficiency in bulk Ta3N5 photoanode, which affords a 320 % increase of the highest photocurrent comparing with that of pure Ta3N5 photoanode under AM 1.5 G 100 mW cm?2 simulated sunlight.  相似文献   

2.
《化学:亚洲杂志》2017,12(3):361-365
In this work, graphitic C3N4 decorated with a CoP co‐catalyst (g‐C3N4/CoP) is reported for photocatalytic H2 evolution reaction based on two‐step hydrothermal and phosphidation method. The structure of g‐C3N4/CoP is well confirmed by XRD, FTIR, TEM, XPS, and UV/Vis diffuse reflection spectra techniques. When the weight percentage of CoP loading is 3.4 wt % (g‐C3N4/CoP‐3.4 %), the highest H2 evolution amount of 8.4×102 μmol g−1 is obtained, which is 1.1×103 times than that over pure g‐C3N4. This value also is comparable with that of g‐C3N4 loaded by the same amount of Pt. In cycling experiments, g‐C3N4/CoP‐3.4 % shows a stable photocatalytic activity. In addition, g‐C3N4/CoP‐3.4 % is an efficient photocatalyst for H2 evolution under irradiation with natural solar light. Based on comparative photoluminescence emission spectra, photoelectrochemical I –t curves, EIS Nyquist plots, and polarization curves between g‐C3N4/CoP‐3.4 % and pure g‐C3N4, it is concluded that the presence of the CoP co‐catalyst accelerates the separation and transfer of photogenerated electrons of g‐C3N4, thus resulting in improved photocatalytic activity in the H2 evolution reaction.  相似文献   

3.
《化学:亚洲杂志》2017,12(8):860-867
Pd nanoparticles (NPs) supported on Ti‐doped graphitic carbon nitride (g‐C3N4) were synthesized by a deposition–precipitation route and a subsequent reduction with NaBH4. The features of the NPs were studied by XRD, TEM, FTIR, XPS, EXAFS and N2‐physisorption measurements. It was found that the NPs had an average size of 2.9 nm and presented a high dispersion on the surface of Ti‐doped g‐C3N4. Compared to Pd loaded on pristine g‐C3N4, the Pd NPs supported on Ti‐doped g‐C3N4 exhibited a high catalytic activity in formic acid dehydrogenation in water at room temperature. The enhanced activity could be attributed to the small Pd NPs size, as well as the strong interaction between Pd NPs and Ti‐doped g‐C3N4.  相似文献   

4.
Solid‐state Li metal batteries (SSLMBs) have attracted considerable interests due to their promising energy density as well as high safety. However, the realization of a well‐matched Li metal/solid‐state electrolyte (SSE) interface remains challenging. Herein, we report g‐C3N4 as a new interface enabler. We discover that introducing g‐C3N4 into Li metal can not only convert the Li metal/garnet‐type SSE interface from point contact to intimate contact but also greatly enhance the capability to suppress the dendritic Li formation because of the greatly enhanced viscosity, decreased surface tension of molten Li, and the in situ formation of Li3N at the interface. Thus, the resulting Li‐C3N4|SSE|Li‐C3N4 symmetric cell gives a significantly low interfacial resistance of 11 Ω cm2 and a high critical current density (CCD) of 1500 μA cm?2. In contrast, the same symmetric cell configuration with pristine Li metal electrodes has a much larger interfacial resistance (428 Ω cm2) and a much lower CCD (50 μA cm?2).  相似文献   

5.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

6.
Cocatalysts have been extensively used to promote water oxidation efficiency in solar‐to‐chemical energy conversion, but the influence of interface compatibility between semiconductor and cocatalyst has been rarely addressed. Here we demonstrate a feasible strategy of interface wettability modification to enhance water oxidation efficiency of the state‐of‐the‐art CoOx/Ta3N5 system. When the hydrophobic feature of a Ta3N5 semiconductor was modulated to a hydrophilic one by in situ or ex situ surface coating with a magnesia nanolayer (2–5 nm), the interfacial contact between the hydrophilic CoOx cocatalyst and the modified hydrophilic Ta3N5 semiconductor was greatly improved. Consequently, the visible‐light‐driven photocatalytic oxygen evolution rate of the resulting CoOx/MgO(in)–Ta3N5 photocatalyst is ca. 23 times that of the pristine Ta3N5 sample, with a new record (11.3 %) of apparent quantum efficiency (AQE) under 500–600 nm illumination.  相似文献   

7.
The development of durable, low‐cost, and efficient photo‐/electrolysis for the oxygen and hydrogen evolution reactions (OER and HER) is important to fulfill increasing energy requirements. Herein, highly efficient and active photo‐/electrochemical catalysts, that is, CoMn‐LDH@g‐C3N4 hybrids, have been synthesized successfully through a facile in situ co‐precipitation method at room temperature. The CoMn‐LDH@g‐C3N4 composite exhibits an obvious OER electrocatalytic performance with a current density of 40 mA cm?2 at an overpotential of 350 mV for water oxidation, which is 2.5 times higher than pure CoMn‐LDH nanosheets. For HER, CoMn‐LDH@g‐C3N4 (η50=?448 mV) requires a potential close to Pt/C (η50=?416 mV) to reach a current density of 50 mA cm2. Furthermore, under visible‐light irradiation, the photocurrent density of the CoMn‐LDH@g‐C3N4 composite is 0.227 mA cm?2, which is 2.1 and 3.8 time higher than pristine CoMn‐LDH (0.108 mA cm?2) and g‐C3N4 (0.061 mA cm?2), respectively. The CoMn‐LDH@g‐C3N4 composite delivers a current density of 10 mA cm?2 at 1.56 V and 100 mA cm?2 at 1.82 V for the overall water‐splitting reaction. Therefore, this work establishes the first example of pure CoMn‐LDH and CoMn‐LDH@g‐C3N4 hybrids as electrochemical and photoelectrochemical water‐splitting systems for both OER and HER, which may open a pathway to develop and explore other LDH and g‐C3N4 nanosheets as efficient catalysts for renewable energy applications.  相似文献   

8.
Herein, a novel broken case‐like carbon‐doped g‐C3N4 photocatalyst was obtained via a facile one‐pot pyrolysis and cost‐effective method using glyoxal‐modified melamine as a precursor. The obtained carbon/g‐C3N4 photocatalyst showed remarkable enhanced photocatalytic activity in the degradation of gaseous benzene compared with that of pristine g‐C3N4 under visible light. The pseudo‐first‐order rate constant for gaseous benzene degradation on carbon/g‐C3N4 was 0.186 hr?1, 5.81 times as large as that of pristine g‐C3N4. Furthermore, a possible photocatalytic mechanism for the improved photocatalytic performance over carbon/g‐C3N4 nanocomposites was proposed.  相似文献   

9.
2D graphitic carbon nitride (g‐C3N4) nanosheets are a promising negative electrode candidate for sodium‐ion batteries (NIBs) owing to its easy scalability, low cost, chemical stability, and potentially high rate capability. However, intrinsic g‐C3N4 exhibits poor electronic conductivity, low reversible Na‐storage capacity, and insufficient cyclability. DFT calculations suggest that this could be due to a large Na+ ion diffusion barrier in the innate g‐C3N4 nanosheet. A facile one‐pot heating of a mixture of low‐cost urea and asphalt is strategically applied to yield stacked multilayer C/g‐C3N4 composites with improved Na‐storage capacity (about 2 times higher than that of g‐C3N4, up to 254 mAh g?1), rate capability, and cyclability. A C/g‐C3N4 sodium‐ion full cell (in which sodium rhodizonate dibasic is used as the positive electrode) demonstrates high Coulombic efficiency (ca. 99.8 %) and a negligible capacity fading over 14 000 cycles at 1 A g?1.  相似文献   

10.
Two‐dimensional (2D) graphitic carbon nitride (g‐C3N4) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self‐supporting spacers was fabricated by assembly of 2D g‐C3N4 nanosheets in a stack with elaborate structures. In water purification the g‐C3N4 membrane shows a better separation performance than commercial membranes. The g‐C3N4 membrane has a water permeance of 29 L m−2 h−1 bar−1 and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g‐C3N4 nanosheets and the spacers between the partially exfoliated g‐C3N4 nanosheets provide nanochannels for water transport while bigger molecules are retained. The self‐supported nanochannels in the g‐C3N4 membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g‐C3N4 nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.  相似文献   

11.
g‐C3N4 membranes were modulated by intercalating molecules with SO3H and benzene moieties between layers. The intercalation molecules break up the tightly stacking structure of g‐C3N4 laminates successfully and accordingly the modified g‐C3N4 membranes give rise to two orders magnitude higher water permeances without sacrificing the separation efficiency. The sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO)/g‐C3N4 with a thickness of 350 nm presents an exceptionally high water permeance of 8867 L h?1 m?2 bar?1 and 100 % rejection towards methyl blue, while the original g‐C3N4 membrane with a thickness of 226 nm only exhibits a permeance of 60 L h?1 m?2 bar?1. Simultaneously, SO3H sites firmly anchor nitrogen with base functionality distributing onto g‐C3N4 through acid–base interactions. This enables the nanochannels of g‐C3N4 based membranes to be stabilized in acid, basic, and also high‐pressure environments for long periods.  相似文献   

12.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

13.
A stable noble‐metal‐free hydrogen evolution photocatalyst based on graphite carbon nitride (g‐C3N4) was developed by a molecular‐level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g‐C3N4. This catalyst family (with less than 0.1 wt % of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt % platinum as co‐catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24 h.  相似文献   

14.
Tantalum nitride (Ta3N5) modified with various O2‐evolution cocatalysts was employed as a photocatalyst for water oxidation under visible light (λ>420 nm) in an attempt to construct a redox‐mediator‐free Z‐scheme water‐splitting system. Ta3N5 was prepared by nitriding Ta2O5 powder under a flow of NH3 at 1023–1223 K. The activity of Ta3N5 for water oxidation from an aqueous AgNO3 solution as an electron acceptor without cocatalyst was dependent on the generation of a well‐crystallized Ta3N5 phase with a low density of anionic defects. Modification of Ta3N5 with nanoparticulate metal oxides as cocatalysts for O2 evolution improved water‐oxidation activity. Of the cocatalysts examined, cobalt oxide (CoOx) was found to be the most effective, improving the water‐oxidation efficiency of Ta3N5 by six to seven times. Further modification of CoOx/Ta3N5 with metallic Ir as an electron sink allowed one to achieve Z‐scheme water splitting under simulated sunlight through interparticle electron transfer without the need for a shuttle redox mediator in combination with Ru‐loaded SrTiO3 doped with Rh as a H2‐evolution photocatalyst.  相似文献   

15.
When a single metal fails to promote an efficient Suzuki‐Miyaura coupling reaction at ambient temperature, the synergistic cooperation of two distinct metals might improve the reaction. To examine the synergistic effect of palladium and nickel for catalyzing Suzuki coupling reaction, g‐C3N4 supported metal nanoparticles of PdO, NiO and Pd‐PdO‐NiO were prepared, characterized and their catalytic activities evaluated over different aryl halides at room temperature and 78 °C. The morphological characterization of Pd‐PdO‐NiO/g‐C3N4 demonstrated that the bimetallic particles were uniformly dispersed over the g‐C3N4 layers with diameters ranging from 3.5‐7.7 nm. XPS analysis showed that nanoparticles of Pd‐PdO‐NiO consisted of Pd(II), Pd(0) and Ni(II) sites. The experiments performed on the catalytic activity of Pd‐PdO‐NiO/g‐C3N4 showed that the prepared catalyst demonstrated an efficient activity without using toxic solvents.  相似文献   

16.
Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications.  相似文献   

17.
Pentazole Derivates and Azides Formed from them: Potassium‐Crown‐Ether Salts of [O3S—p‐C6H4—N5] and [O3S—p‐C6H4—N3] O3S—p‐C6H4—N2+ was reacted with sodium azide at —50 °C in methanol, yielding a mixture of 4‐pentazolylbenzenesulfonate and 4‐azidobenzenesulfonate (amount‐of‐substance ratio 27:73 according to NMR). By addition of KOH in methanol at —50 °C a mixture of the potassium salts K[O3S—p‐C6H4—N5] and K[O3S—p‐C6H4—N3] was precipitated (ratio 60:40). A solution of this mixture along with 18‐crown‐6 in tetrahydrofurane yielded the crystalline pentazole derivate [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF by addition of petrol ether at —70 °C. From the same solution upon evaporation and redissolution in THF/petrol ether the crystalline azide [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF was obtained. A solution of the latter in chloroform/toluene under air yielded [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O. According to their X‐ray crystal structure determinations [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF and [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF have the same kind of crystal packing. Differences worth mentioning exist only for the atomic positions of the pentazole ring as compared to the azido group and for one THF molecule which is coordinated to the potassium ion; different orientations of the THF molecule take account for the different space requirements of the N5 and the N3 group. In [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O there exists one unit consisting of one [K‐18‐crown‐6]+ and one [O3S‐C6H4—N3] ion and another unit consisting of two [O3S‐C6H4—N3] ions joined via two [K‐18‐crown‐6]+ ions and one water molecule. The rate constants for the decomposition [O3S‐C6H4—N5] → [O3S‐C6H4—N3] + N2 in methanol were determined at 0 °C and —20 °C.  相似文献   

18.
We prepared a non‐covalently coupled hybrid of reduced graphene oxide (rGO)‐doped graphitic carbon nitride (g‐C3N4) by freezing‐assisted assembly and calcination. Fourier transform infrared, Raman and X‐ray photoelectron spectroscopies and transmission electron microscopy confirmed that rGO was incorporated into the bulk g‐C3N4, which was an ideal support for loading Pd nanoparticles. The Pd nanoparticles with an average size of 4.57 nm were uniformly dispersed on the rGO‐doped g‐C3N4 surface. The layered structure provided large contact area of g‐C3N4 with rGO, further accelerating the electron transfer rate and inhibiting electron–hole recombination. Consequently, compared with Pd/rGO/g‐C3N4 and Pd/g‐C3N4, the Pd/rGO‐doped g‐C3N4 showed a prominent catalytic activity for visible‐light‐driven photocatalytic Suzuki–Miyaura coupling at ambient temperature. The Pd/rGO‐doped g‐C3N4 exhibited very high stability after six consecutive cycles with minimal loss of catalytic activity.  相似文献   

19.
The photocatalytic activity of graphite‐like carbon nitride (g‐C3N4) could be enhanced by heterojunction strategies through increasing the charge‐separation efficiency. As a surface‐based process, the heterogeneous photocatalytic process would become more efficient if a larger contact region existed in the heterojunction interface. In this work, ultrathin g‐C3N4 nanosheets (g‐C3N4‐NS) with much larger specific surface areas are employed instead of bulk g‐C3N4 (g‐C3N4‐B) to prepare AgIO3/g‐C3N4‐NS nanocomposite photocatalysts. By taking advantage of this feature, the as‐prepared composites exhibit remarkable performances for photocatalytic wastewater treatment under visible‐light irradiation. Notably, the optimum photocatalytic activity of AgIO3/g‐C3N4‐NS composites is almost 80.59 and 55.09 times higher than that of pure g‐C3N4‐B towards the degradation of rhodamine B and methyl orange pollutants, respectively. Finally, the stability and possible photocatalytic mechanism of the AgIO3/g‐C3N4‐NS system are also investigated.  相似文献   

20.
Proton adsorption on metallic catalysts is a prerequisite for efficient hydrogen evolution reaction (HER). However, tuning proton adsorption without perturbing metallicity remains a challenge. A Schottky catalyst based on metal–semiconductor junction principles is presented. With metallic MoB, the introduction of n‐type semiconductive g‐C3N4 induces a vigorous charge transfer across the MoB/g‐C3N4 Schottky junction, and increases the local electron density in MoB surface, confirmed by multiple spectroscopic techniques. This Schottky catalyst exhibits a superior HER activity with a low Tafel slope of 46 mV dec?1 and a high exchange current density of 17 μA cm?2, which is far better than that of pristine MoB. First‐principle calculations reveal that the Schottky contact dramatically lowers the kinetic barriers of both proton adsorption and reduction coordinates, therefore benefiting surface hydrogen generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号