首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
微波等离子体化学气相沉积法低温制备直纳米碳管膜   总被引:7,自引:0,他引:7  
Among the three main methods for the synthesis of carbon nanotubes (CNTs), chemical vapor deposition (CVD) has received a great deal of attention since CNTs can be synthesized at significantly low temperature. Plasma chemical vapor deposition methods can synthesize CNTs at lower temperature than thermal CVD. But in the usual catalytic growth of CNTs by CVD, CNTs are often tangled together and have some defects. These will limit the property research and potential applications. How to synthesize the straight CNTs at low temperature becomes a challenging issue. In this letter, straight carbon nanotube (CNT) films were achieved by microwave plasma chemical vapor deposition (MWPCVD) catalyzed by round Fe-Co-Ni alloy particles on Ni substrate at 610℃. It was found that, in our experimental condition, the uniform growth rate along the circumference of round alloy particles plays a very important role in the growth of straight CNT films. And because the substrate is conducting, the straight CNT films grown at low temperature may have the benefit for property research and offer the possibility to use them in the future applications.  相似文献   

2.
ZnTiO3 nanocrystals were prepared by sol-gel method, using Zn(NO3)2 and Ti(C4H9O)4 in the topic. The as-prepared ZnTiO3 nanocrystals were characterized by XRD, FTIR and TEM, and the catalytic performance of ZnTiO3 nanocrystals of different contents for the ammonium perchlorate(AP)decomposition was investigated by thermal analysis. The results indicate that ZnTiO3 with pure cube structure can be synthesized at 600 ℃ by this procedure,which was spheroid with particle size of about 60~100 nm. The results expressed that the low temperature decomposition peaks of AP is advanced by 17 ℃ and the high temperature decomposition peaks of AP is advanced by 24 ℃ when adding 5% nanoparticle ZnTiO3 powder. The catalytic effects of ZnTiO3 powders on the high temperature decomposition of AP are less than that of nanometer metal powders, but all the micron metal powders decrease the low decomposition temperature of AP.  相似文献   

3.
In situ NMR measurements of the diffusion coefficients,including an estimate of signal strength,of lithium ion conductor using diffusion-weighting pulse sequence are performed in this study.A cascade bilinear model is proposed to estimate the diffusion sensitivity factors of pulsed-field gradient using prior information of the electrochemical performance and Arrhenius constraint.The model postulates that the active lithium nuclei participating electrochemical reaction are relevant to the NMR signal intensity,when discharge rate or temperature condition is varying.The electrochemical data and the NMR signal strength show a highly fit with the proposed model according our simulation and experiments.Furthermore,the diffusion time is constrained by temperature based on Arrhenius equation of reaction rates dependence.An experimental calculation of Li_4Ti_5O_(12)(LTO)/carbon nanotubes(CNTs) with the electrolyte evaluating at 20 ℃ is presented,which the b factor is estimated by the discharge rate.  相似文献   

4.
Sm修饰的Ni-MgO催化剂制备碳纳米管的研究   总被引:2,自引:0,他引:2  
李克  吕功煊  刘建福 《无机化学学报》2005,21(10):1571-1575
Carbon nanotubes (CNTs) have been synthesized over Ni-MgO and Ni-Sm-MgO catalysts by decomposition of CH4 at 650 ℃. The addition of Sm into Ni-MgO catalyst not only promotes the catalytic activity and lifetime of the catalyst, but also improves the graphitization and heat stability of carbon nanotubes. The yield of CNTs obtained over the Ni-10Sm-MgO catalyst reaches 33 g C·(g Ni)-1, being more than 5 times higher than that of the Ni-MgO catalyst. XRD and TPR results of the catalysts indicate that there is a remarkable interaction of Ni with Sm species, which facilitates the reduction of nickel and restrains the Ni particles from agglomerating.  相似文献   

5.
Fe/La2O3纳米催化剂制备碳纳米管   总被引:12,自引:0,他引:12       下载免费PDF全文
Nanocrystalline LaFeO3 was synthesised by the citrate method with La(NO3)3·6H2O,Fe(NO3)3·9H2O and citric acid as the raw materials. Before and after reduction, its structure was characterized by means of X-ray diffraction and transmission electron microscopy(TEM). And after reduction of LaFeO3 oxide, the rare earth oxide, La2O3, prevents Fe particles from agglomerating and promotes the dispersion of nano-scale Fe particles (ca.40nm), which is one of the key factors for the growth of carbon nanotube. The carbon nanotubes from the catalytic de-composition of C2H2 were obtained using Fe/La2O3 nano-scale catalyst, which was formed from LaFeO3 oxide as the catalyst precursor. The morphological structures of the carbon nanotube obtained have been examined by TEM. The results indicate that they are multi-walled nanotubes of good quality with inter diameter ranging from 20~25nm and length ranging from 25~40μm. The yields of carbon nanotube are 1.25g·gcat-1 at the reaction temperature of 973K for 30min.  相似文献   

6.
The synthesis of carbon nanotubes (CNTs) via chemical vapour deposition of methane on NiO/γ-Al2O3 catalyst has been investigated. The reduction behavior of NiO/γ-Al2O3 by methane was studied using thermogravimetric (TG) and X-ray diffraction (XRD) techniques. It was found that the NiO supported on γ-Al2O3, was reduced to Ni0 in methane atmosphere in the temperature range of 710--770 ℃. The catalytic activity of NiO/γ-Al2O3 for CNTs synthesis by in situ chemical vapour deposition of methane during the reduction was also investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the CNTs produced at various reduction temperatures. The results indicated that the reduction temperature exhibits obvious influence on the morphology and the yield of CNTs. CNTs with the diameter of about 20 nm were obtained at reduction temperature of 750 ℃, and higher reduction temperature (such as 800 and 850 ℃) led to an increase in CNTs diameter and a decrease in CNTs yield.  相似文献   

7.
The synthesis of carbon nanotubes (CNTs) via chemical vapour deposition of methane on NiO/γ-Al2O3 catalyst has been investigated.The reduction behavior of NiO/γ-Al2O3 by methane was studied using thermogravimetric (TG) and X-ray diffraction (XRD) techniques.It was found that the NiO supported on γ-Al2O3,was reduced to Ni0 in methane atmosphere in the temperature range of 710-770℃.The catalytic activity of NiO/γ-Al2O3 for CNTs synthesis by in situ chemical vapour deposition of methane during the reduction was also investigated.Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the CNTs produced at various reduction temperatures.The results indicated that the reduction temperature exhibits obvious influence on the morphology and the yield of CNTs.CNTs with the diameter of about 20 nm were obtained at reduction temperature of 750℃,and higher reduction temperature (such as 800 and 850℃) led to an increase in CNTs diameter and a decrease in CNTs yield.  相似文献   

8.
高温下锆酸锂吸收二氧化碳的研究   总被引:15,自引:0,他引:15  
Li2ZrO3 to be used as a CO2 absorbent at 450℃ to 710℃ is synthesized. The results indicate that the loading capacity of Li2ZrO3 for CO2 is slightly improved than that reported previously. The absorption capacity attain to about 25(±0.6)%(wt)at 500℃ kept 3h in an atmosphere containing 20% CO2 (balanced by air). Moreover, the temperature of synthesis is lower than the temperature reported in the literature, and also the time of synthesis is shorter.  相似文献   

9.
微波合成PtRu/C纳米催化剂及其对甲醇电化学氧化性能   总被引:4,自引:0,他引:4  
PtRu/carbon nanosized catalyst with PtRu loading of 26.4wt% (Rt∶Ru=1.0∶1.0~1.1) was rapidly synthesized by the microwave polyol process employing the ethylene glycol solution of H2PtCl6 and RuCl3 as precursors in the presence of XC-72 carbon support. TEM observations demonstrated that microwave-prepared PtRu nanoparticles were narrowly distributed and highly dispersed on the carbon with an average size of 3.9 nm. Electrochemical experiments showed that microwave-synthesized PtRu/carbon catalyst exhibited very high catalytic activity for electro-oxidation of liquid methanol at room temperature.  相似文献   

10.
Series of carbon nanotube supported Ru-based catalysts were prepared by impregnation method and applied successfully for complete removal of CO by CO selective methanation from H2-rich gas stream conducted in a fixed-bed quartz tubular reactor at ambient pressure.It was found that the metal promoter,reduction temperature and metal loading affected the catalytic properties significantly.The most excellent performance was presented by 30 wt% Ru-Zr/CNTs catalyst reduced at 350℃.Since it decreased CO concentration to below 10ppm from 12000ppm by CO selective methanation at the temperature range of 180-240℃,and kept CO selectivity higher than 85% at the temperature below 200℃.Characterization using XRD,TEM,H2-TPR and XPS suggests that Zr modification of Ru/CNTs results in the weakening of the interaction between Ru and CNTs,a higher Ru dispersion and the oxidization of surface Ru.Amorphous and high dispersed Ru particles with small size were obtained for 30 wt% Ru-Zr/CNTs catalyst reduced at 350℃,leading to excellent catalytic performance in CO selective methanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号