首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以核桃壳为原料,经过碳化、KOH活化, 制备了高比表面积活性炭,通过三甲基氧基苯基硅烷对活性炭表面进行改性,制得苯基键合高比表面积活性炭吸附材料.通过氮气吸附法测定了苯基键合活性炭的比表面积及孔径分布;采用红外光谱、X射线光电子能谱、X射线粉末衍射技术对苯基键合活性炭的有机官能团、表面元素的化学环境及晶体结构进行了表征.将该吸附材料制成采样管,吸附空气中的挥发性有机物,二硫化碳解吸后使用气相色谱进行分析.考察了苯基键合活性炭对乙醇、丙酮、正己烷、乙酸乙酯、四氢呋喃、1,2-二氯乙烷和苯共7种挥发性有机化合物(VOCs)的吸附性能,饱和吸附量在129~216 mg/g之间;在0.05~ 2.50 mg/mL范围内,7种组分的峰高与浓度呈良好的线性关系,检出限在0.92~3.60 mg/m3之间.  相似文献   

2.
以蓝藻为前驱体,采用KOH活化法制备了一系列蓝藻基活性炭;探讨了活化时间、活化温度以及碱炭比等活化参数对其孔结构的影响;进一步分别用HNO_3,HPO_4和NH_3·H_2O进行二次改性,制备了N或P原子掺杂的改性蓝藻基活性炭,研究了不同改性活性炭在25℃和1.01×10~5Pa条件下对CO_2的吸附捕集性能.结果表明,KOH活化的最佳活化时间为2 h,活化温度800℃,碱炭比为2.样品ACK-2-8在该条件下对CO_2的吸附量达到3.85 mmol/g.二次改性后的样品ACK-2-8-1,ACK-2-8-2和ACK-2-8-3对CO_2的吸附量分别高达4.41,3.97和4.63 mmol/g.N的掺杂有利于CO_2的吸附捕集.多批次重复再生实验结果表明,本材料对CO_2吸附再生具有较稳定的重复利用性.  相似文献   

3.
研究了以木质活性炭颗粒为原料,通过KOH再活化的方法制备多微孔活性炭的方法。考察了活性炭和KOH的最佳质量比例,并通过低温氮吸附、SEM、XRD等手段表征了样品的比表面、孔结构、孔分布、颗粒形貌和晶体结构;通过对含间二甲苯50mg.L-1的气流的吸附实验表征了所制备活性炭的二甲苯去除能力,实验结果表明,经过KOH再活化显著调高了样品的间二甲苯吸附容量,这很可能和样品中发达的微孔结构有关。  相似文献   

4.
以核桃壳为原料,氢氧化钾作活化剂制备了高比表面积活性炭,使用苯基三甲氧基硅烷对其进行表面改性,得到苯基键合活性炭。通过氮气吸附法测定了活性炭的比表面积及孔隙结构,使用X射线光电子能谱表征测定了苯基键合活性炭的表面结构及碳元素含量。采用Langmuir热力学方程、Freundlich热力学方程、Lagergren准一级、准二级动力学方程及D-R方程对苯基键合活性炭对苯的吸附等温线进行了拟合。考察了温度和采气流速对吸附效率的影响。结果表明,苯基键合活性炭的孔隙主要为微孔,比表面积达2800 m~2·g~(-1);苯基键合活性炭对苯的吸附符合Langmuir等温吸附模型和Lagergren准一级动力学方程,饱和吸附量为713. 89 mg·g~(-1),苯的特征吸附能为23. 495 kJ·mol~(-1);增加温度或采气流速均使活性炭对苯的吸附量减少。  相似文献   

5.
研究了以木质活性炭颗粒为原料, 通过KOH再活化的方法制备多微孔活性炭的方法。考察了活性炭和KOH的最佳质量比例, 并通过低温氮吸附、SEM、XRD等手段表征了样品的比表面、孔结构、孔分布、颗粒形貌和晶体结构;通过对含间二甲苯50 mg·L-1的气流的吸附实验表征了所制备活性炭的二甲苯去除能力, 实验结果表明, 经过KOH再活化显著调高了样品的间二甲苯吸附容量, 这很可能和样品中发达的微孔结构有关。  相似文献   

6.
以糠醛渣为原料、KOH为活化剂,采用两步活化法制备了活性炭。考察了活化温度、活化时间、碱炭比和浸渍时间对活性炭孔结构及吸附性能的影响。采用低温N2吸附、BET、BJH及DFT理论对活性炭孔结构进行了表征分析,利用傅里叶变换红外-拉曼光谱仪检测其表面官能团,分别使用扫描电镜和X射线衍射对其进行表观形貌观察和晶型分析。结果表明,制备活性炭的最佳工艺条件为:活化温度800℃、活化时间3h、碱炭比3∶1、浸渍时间12h。所制备的糠醛渣活性炭的吸附孔径分布集中,吸附孔容为0.8825cm2/g,DFT总比表面积为3290.5m2/g,其碘吸附值和亚甲基蓝吸附值分别为2107.32mg/g和39.67mL/0.1g。  相似文献   

7.
以糠醛渣为原料、KOH为活化剂,采用两步活化法制备了活性炭。考察了活化温度、活化时间、碱炭比和浸渍时间对活性炭孔结构及吸附性能的影响。采用低温N2吸附、BET、BJH及DFT理论对活性炭孔结构进行了表征分析,利用傅里叶变换红外-拉曼光谱仪检测其表面官能团,分别使用扫描电镜和X射线衍射对其进行表观形貌观察和晶型分析。结果表明,制备活性炭的最佳工艺条件为:活化温度800℃、活化时间3h、碱炭比3∶1、浸渍时间12h。所制备的糠醛渣活性炭的吸附孔径分布集中,吸附孔容为0.8825cm2/g,DFT总比表面积为3290.5m2/g,其碘吸附值和亚甲基蓝吸附值分别为2107.32mg/g和39.67mL/0.1g。  相似文献   

8.
以棕榈纤维为原材料、磷酸为活化剂制备活性炭纤维,通过单因素实验和正交实验深入探讨反应条件对活性炭纤维吸附性能的影响,并确定最佳制备条件。系统研究三氯生在活性炭纤维上的吸附热力学、动力学以及溶液p H值对吸附的影响,并研究比较乙醇洗脱与加热煅烧法对吸附饱和后的活性炭纤维的再生效果。结果表明,磷酸溶液质量分数和碳化温度对活性炭纤维吸附性能影响较大,活化剂浸渍时间对其影响较小,活性炭纤维的最佳制备条件为:磷酸溶液浓度25%,碳化温度400℃,活化时间36h。所制备的活性炭纤维的BET比表面积为1358.478m~2/g、微孔面积为1240.131m~2/g、平均孔径为1.886nm。活性炭纤维对三氯生的吸附等温线符合Langumuir方程,吸附是放热反应。动力学研究表明,吸附反应符合准二级动力学方程,且在5h后基本达到平衡。随着p H值的升高,材料对三氯生的吸附量略有下降。乙醇洗脱和加热煅烧均可有效再生吸附饱和后的活性炭纤维。  相似文献   

9.
以内蒙古褐煤为原料,N-甲基吡咯烷酮为萃取剂,在不同温度下萃取制备无灰煤,进而利用KOH活化法制备活性炭,探究萃取温度对活性炭电化学性能的影响。结果表明,无灰煤萃取温度对煤基活性炭电化学性能有显著影响。对无灰煤及原料褐煤的灰分含量,表面官能团含量和对应活性炭的比表面积、孔结构及其电化学性能进行对比发现,330℃下萃取制备出的无灰煤在碱煤质量比3∶1,活化温度650℃,活化时间2h的活化过程中具备最适宜的反应性,对应活性炭比表面积高达1 252 m~2·g~(-1),表面官能团含量适中,在3 mol·L~(-1)KOH电解液中50 mA·g~(-1)电流密度下比电容高达322 F·g~(-1),2 A·g~(-1)的电流密度下比电容保持率仍可接近90%。  相似文献   

10.
为提高活性炭(GAC)的吸附性能,采用氢氧化镁对活性炭进行改性,制得经济高效的改性活性炭材料。利用扫描电镜、XRD对改性活性炭进行表征;通过实验确定改性活性炭的最佳制备条件:氯化镁浓度为1.0 mol·L~(-1),氢氧化钠浓度为0.5 mol·L~(-1),氢氧化钠浸泡活性炭的温度20℃;吸附酸性品红吸附时间为150 min时,改性活性炭对酸性品红的吸附量为6.16 mg·g~(-1),而原活性炭吸附量为4.12 mg·g~(-1);热力学吉布斯自由能ΔH~00和焓变ΔH~00,说明该吸附过程是吸热和自发进行的,同时考察了吸附时间、溶液pH值、吸附剂投加量和温度等因素对吸附效果的影响。  相似文献   

11.
In this work, fir woods and pistachio shells were used as source materials to prepare porous carbons, which were activated by physical (steam) and chemical (KOH) methods. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were first characterized by a t-plot method based on N(2) adsorption isotherms. Highly porous activated carbons with BET surface area up to 1009-1096 m(2)/g were obtained. The steam and KOH activation methods produced carbons with mesopore content in the range 9-15 and 33-49%, respectively. The adsorption equilibria and kinetics of tannic acid, methylene blue, 4-chlorophenol, and phenol from water on such carbons at 30 degrees C were then investigated to check their chemical characteristics. The Freundlich equation gave a better fit to all adsorption isotherms than the Langmuir equation. On the other hand, the intraparticle diffusion model could best follow all adsorption processes. In comparison with KOH-activated carbons, it was shown that the rate of external surface adsorption with steam-activated carbons was significantly higher but the rate of intraparticle diffusion was much lower.  相似文献   

12.
Carbonaceous adsorbents with controllable surface area were chemically activated with KOH at 780 degrees C from chars that were carbonized from corncobs at 450 degrees C. The pore properties, including BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons, were characterized by the t-plot method based on N(2) adsorption isotherms. Two groups are classified according to the types of adsorption/desorption isotherms. Group I corncob-derived activated carbons, with KOH/char ratios from 0.5 to 2, exhibited BET surface area ranging from 841 to 1221 m(2)/g. Group II corncob-derived activated carbons, with KOH/char rations from 3 to 6, showed high BET surface areas, from 1976 to 2595 m(2)/g. From scanning electron microscopic (SEM) results, the surface morphology of honeycombed holes on corncob-derived activated carbons was significantly influenced by the KOH/char ratios. The adsorption kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water at 30 degrees C were studied on the two groups of activated carbons, which were suitably described by two simplified kinetic models, pseudo-first-order and pseudo-second-order equations. The effective particle diffusivities of phenols and dyes at the corncob-derived activated carbons of group II are higher than those of ordinary activated carbons. The high-surface-area activated carbons were demonstrated to be promising adsorbents for pollution control and for other applications.  相似文献   

13.
Fir wood was first carbonized for 1.5 h at 450 degrees C, then soaked in a KOH solution KOH/char ratio of 1, and last activated for 1 h at 780 degrees C. During the last hour CO2 was poured in for further activation for 0, 15, 30, and 60 min, respectively. Carbonaceous adsorbents with controllable surface area and pore structure were chemically activated from carbonized fir wood (i.e., char) by KOH etching and CO2 gasification. The pore properties, including the BET surface area, pore volume, pore size distribution, and pore diameter, of these activated carbons were first characterized by the t-plot method based on N2 adsorption isotherms. Fir-wood carbon activated with CO2 gasification from 0 to 60 min exhibited a BET surface area ranging from 1371 to 2821 m2 g(-1), with a pore volume significantly increased from 0.81 to 1.73 m2 g(-1). Scanning electron microscopic (SEM) results showed that the surfaces of honeycombed holes in these carbons were significantly different from those of carbons without CO2 gasification. The adsorption of methylene blue, basic brown 1, acid blue 74, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water on all the carbons studied was examined to check their chemical characteristics. Adsorption kinetics was in agreement with the Elovich equation, and all equilibrium isotherms were in agreement with the Langmuir equation. These results were used to compare the Elovich parameter (1/b) and the adsorption quantity of the unit area (q(mon)/Sp) of activated carbons with different CO2 gasification durations. This work facilitated the preparation of activated carbon by effectively controlling pore structures and the adsorption performance of the activated carbon on adsorbates of different molecular forms.  相似文献   

14.
The aim of work is to study the adsorption of a common volatile organic compound such as toluene using activated carbons prepared by chemical activation with phosphoric acid of a lignocellulosic precursor, almond shell, under different conditions. The Impregnation ratio, temperature and time of activation were modified to obtain activated carbons with different characteristics. Regarding the characteristics of the activated carbons, the effects of porous structure and surface chemistry on the toluene adsorption capacity from toluene isotherms have been analysed. Results show that the control of properties of the activated carbons, particularly porous structure, highly dependent on the preparation conditions, plays a decisive role on the toluene adsorption capacity of the activated carbons. Concerning the experiments of toluene adsorption conducted in dynamic mode, activated carbons prepared at low temperatures of activation show higher breakthrough times than those obtained for activated carbons prepared at higher activation temperatures. The amount of toluene adsorbed in presence of water vapor in the gas stream lead to a decrease ranging from 33 to 46 % except for carbons prepared at higher temperatures activated that show only a slight decrease in the amount of toluene adsorbed. Activated carbons can be regenerated with soft heat treatment showing a slight decrease in the adsorption capacity. The high toluene adsorption capacities as well as the high breakthrough times obtained in presence of water vapor make these activated carbons suitable for commercial applications.  相似文献   

15.
IntroductionElectric double layer capacitors( EDLCs) witha high power density can be used as memory back-up devices or electric vehicles.EDLCs store energyin the electric double layer by charge accumulationon the interface between the electrode and the elec-trolyte. In order to obtain reasonable energies andpower densities,the more suitable material forEDLCs musthave a high surface area with a signif-icant value of specific double layer capacitance,better pore size distribution and electro…  相似文献   

16.
The adsorption of mercury from a single/multi-solute aqueous solution by activated carbon (AC) prepared from cherry stones (CS) by chemical activation with H3PO4, ZnCl2 or KOH is studied. Three series of AC (i.e., P, H3PO4; Z, ZnCl2; K, KOH) were prepared by controlling the impregnation ratio and carbonization temperature. The textural characterization of AC was carried out by gas adsorption, mercury porosimetry and density measurements. The surface chemistry was analyzed by the pH of the point of zero charge (pHzpc), FT-IR spectroscopy and Boehm’s method. Experiments of mercury adsorption were conducted by the batch method, using aqueous solutions of mercury and of mercury, cadmium and zinc without pH adjustment. The ACs possess a wide range of pore volumes and sizes. Their microporosity is usually well developed. The meso- and macropore volumes are higher for the P carbons and K carbons, respectively. BET surface areas as a rule range between 1000 and 2000 m2?g?1. The pHzpc is much lower for the P carbons. The content of acidic oxygen surface groups is lower for the K carbons, whereas the content of basic groups is higher for these carbons. The kinetics of the adsorption process of mercury is faster for ACs with high volumes of large size pores. However, the surface groups have a marked unfavorable influence on the kinetics. The pseudo-second order rate constant (k2×10?3, g/mol?h) is higher by the order Z-4-800 (67.69)>K-3-800 (43.45)>P-3.44-400 (36.98). The incorporation of zinc and cadmium to the mercury solution usually decelerates the adsorption process for the P carbons and Z carbons and accelerates it for the K carbons. The amount adsorbed of mercury is much larger for the K carbons than for the other ACs. For the Z carbons, competition effects of zinc and cadmium on the adsorption of mercury are negligible, which indicates that mercury adsorbs specifically on surface active sites of these adsorbents.  相似文献   

17.
Chemical activation of carbon mesophase pitches   总被引:10,自引:0,他引:10  
This paper studies the chemical activation of mesophase pitches of different origins in order to obtain activated carbons suitable for use as electrodes in supercapacitors. The effect that the activating agent (NaOH, LiOH, and KOH), the alkaline hydroxide/pitch ratio, and the activation temperature had on the characteristics of the resultant activated carbons was studied. LiOH was found to be a noneffective activating agent, while activation with NaOH and KOH yielded activated carbons with high apparent surface areas and pore volumes. The increase of the KOH/pitch ratio caused an increase of the chemical attack on the carbon, producing higher burnoffs and development of porosity. Extremely high apparent surface areas were obtained when the petroleum pitch was activated with 5:1 KOH/carbon ratio. The increase of the activation temperature caused an increase of the burnoff, although the differences were not as significant as those derived from the use of different proportions of activating agent.  相似文献   

18.
Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. To improve the CO2 adsorption efficiency, ONCs were chemically activated to obtain high specific surface area and micro-/mesopore volume with different KOH amounts (i.e., 0, 1, 2, 3, and 4) as an activating agent. The prepared nanoporous carbons (NCs) materials were analyzed by low-angle X-ray diffraction for confirmation of synthesized ONCs structures. The structural properties of the NCs materials were analyzed by high-angle X-ray diffraction. The textural properties of the NCs materials were examined using the N2/77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO2 adsorption capacity was measured by CO2 isothermal adsorption at 298 K/1 bar. From the results, the NCs activated with KOH showed that the increasing specific surface areas and total pore volumes resulted in the enhancement of CO2 adsorption capacity.  相似文献   

19.
In this work, glass-fiber-supported activated carbons (GFACs) were prepared by KOH activation using phenolic resin. Two different preparation methods were chosen: (a) filling and (b) impregnation methods. The structural properties of the GFACs studied were characterized by using N2 adsorption isotherms at 77 K and transformed models, such as the DR equation and the alphas-plot. A scanning electron microscope (SEM) was also used to investigate the external pore structure of the resulting carbons. The specific surface areas and pore volumes for both methods increased with increasing content of KOH. However, the pore evolution for the filling method was superior to that for the impregnation method. DR plots for all samples showed a good linearity at low relative pressure. Also, all samples displayed a slight upward deviation at the linear portion of the alphas-plots, indicating the presence of mesopores and external surface area. SEM studies showed that GFACs possessed a well-developed pore structure and exhibited a change in the pore evolution according to the preparation conditions.  相似文献   

20.
采用磷酸活化和磷酸改性制备了不同种类的含磷活性炭,采用元素分析、X射线光电子能谱(XPS)和氮气吸附等手段分析了活性炭的元素含量、表面化学性质和孔隙结构,采用恒电流充放电、循环伏安和交流阻抗分别考察了活性炭在KOH和H2SO4电解质溶液中作为超级电容器电极材料的电化学性能,采用自由截距多元线性回归拟合统计分析研究了活性炭电极比电容量的影响因素,应用三电极体系分析了磷元素对活性炭电化学性能的影响机理。研究结果表明,活性炭掺杂的磷引入了赝电容,提高了活性炭电极的比电容量,磷元素含量为5.88%(w)的活性炭的比电容量在0.1 A·g-1下达到185 F·g-1。统计分析结果显示,活性炭的中孔有利于电解质离子向微孔内的扩散。在6 mol·L-1 KOH电解质溶液中,孔径在1.10-1.61 nm、2.12-2.43nm及3.94-4.37 nm范围内是电解质离子在活性炭孔隙内部形成双电层的主要场所;在1 mol·L-1 H2SO4电解质溶液中,孔径在0.67-0.72 nm范围内有利于双电层电容的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号