首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The plasma nitriding phenomena that occur on the surfaces of iron and steel were investigated. In particular, the correlation between the kinds of nitrogen radicals and the surface nitriding reaction was investigated using a glow‐discharge apparatus. To control the excitation of nitrogen radicals, noble gas mixtures were used for the plasma gas. The highly populated metastables of noble gases selectively produce excited nitrogen molecules (N2*) or nitrogen molecule ions (N2+). The optical emission spectra suggested that the formation of N2*‐rich or N2+‐rich plasma was successfully controlled by introducing different kinds of noble gases. Auger electron spectroscopy and XPS were used to characterize the depth profile of the elements and chemical species on the nitrided surface. The nitride layer formed by a N2+‐rich plasma had a much higher nitrogen concentration than that by a N2*‐rich plasma, likely due to the larger chemical activity of the N2+ species as well as the N2+ sputtering bombardment to the cathode surface. The strong reactivity of the N2+ species was also confirmed from the chemical shift of N 1s spectra for iron nitrides. An iron nitride formed by the N2+‐rich plasma has higher stoichiometric quantity of nitrogen than that formed by the N2*‐rich plasma. Besides the effect of nitrogen radicals on surface nitridation, the contribution of the chromium in steel to the nitriding reaction was also examined. This chromium can promote a nitriding reaction at the surface, which results in an increase in the nitrogen concentration and the formation of nitride with high nitrogen coordination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
ICR spectroscopy has been used to reinvestigate the He+ + N2 charge transfer reaction at thermal energies. It is concluded that at least 60% of the N+ come from short lived excited (N2+)*.  相似文献   

3.
The emission from the first negative system, N2+(B 2Σ+u)→N2+(X 2Σ+g)+, is studied in the flowing nitrogen afterglow of a DC arc plasma. Investigation of the spectrum shows overpopulation of the vibrational levels 6 and 7 of the excited molecular ion, N2+(B 2Σ+u). Selective excitation of these levels is explained by a charge exchange reaction between atomic ions in the ground state and metastable molecules in the N2(A 3Σ+u) state. The emitted intensity of the first negative system is shown to be linear with electron density ne for ne>2×1016 m−3, a higher-order dependence exists below this value. This is consistent with population of N2+(B 2Σ+u) by atomic ions, N+.  相似文献   

4.
Triplet difluorophosphoryl nitrene F2P(O)N (X3A′′) was generated on ArF excimer laser irradiation (λ=193 nm) of F2P(O)N3 in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS‐QB3 calculations. On visible light irradiation (λ>420 nm) at 16 K F2P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (λ=255 nm) of F2P(O)N (X3A′′) induced a Curtius‐type rearrangement, but instead of a 1,3‐fluorine shift, nitrogen migration to give F2PON is proposed to be the first step of the photoisomerization of F2P(O)N into F2PNO (difluoronitrosophosphine). Formation of novel F2PNO was confirmed with 15N‐ and 18O‐enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P? N bond of 1.922 Å [B3LYP/6‐311+G(3df)] and low bond‐dissociation energy of 76.3 kJ mol?1 (CBS‐QB3) for F2PNO.  相似文献   

5.
Guided ion beam mass spectrometry is used to measure the cross sections as a function of kinetic energy for reaction of SiH4 with O+(4S), O 2 + (2Πg,v=0), N+(3P), and N 2 + (2Σ g + ,v=0). All four ions react with silane by dissociative charge-transfer to form SiH m + (m=0?3), and all but N 2 + also form SiXH m + products where (m=0?3) andX=O, O2 or N. The overall reactivity of the O+, O 2 + , and N+ systems show little dependence on kinetic energy, but for the case of N 2 + , the reaction probability and product distribution relies heavily on the kinetic energy of the system. The present results are compared with those previously reported for reactions of the rare gas ions with silane [13] and are discussed in terms of vertical ionization from the 1t 2 and 3a 1 bands of SiH4. Thermal reaction rates are also provided and dicussed.  相似文献   

6.
The spectra of flowing microwave post-discharge excited in N2 and N2 + CH4(N2 + C2H2) gas mixtures have been studied at low temperature (77 K). The molecular spectra of CN emitted by the collision-induced N + C and N + CH chemiluminescent reactions in the low-temperature afterglow system have been thoroughly investigated. The intensity of different CN (B2+-X2+) vibrational bands is very sensitive to low hydrocarbon concentration in nitrogen used as the working gas. Detection of hydrocarbon species has been demonstrated from concentrations of CH4 and C2H2 in N2 greater than 1010 molecules · cm–3.  相似文献   

7.
Results are presented for two experiments on N2O2+ cluster ions formed via the reactions O2+ + N2 + M → (N2) (O2+) + M (i), and NO+ + NO + M → (NO)2+ + M (ii). In the first experiment the N2O2+ clusters are collisionally dissociated. The resulting collision-induced dissociation (CID) spectra show almost exclusively O2+ and N2+ products from N2 O2+ formed via the first reaction, and almost exclusively NO+ products from N2O2+ formed via the second reaction. In the second experiment, single-photon photodissociation of N2O2+ ions produced by both reactions (i) and (ii) was investigate using 514.5 and 634 nm radiation. The results indicate that the N2O2+ cluster from reaction (i) cannot be photodissociated while the N2O2+ cluster from reaction (ii) undergoes photodissociation at both wavelengths. These experiments indicate that two distinct N2O2+ cluster ions exist and that reactions (i) and (ii) selectively produce the two ions.  相似文献   

8.
A new polymorph of the iminophosphorane Ph2P(CH2Py)(NSiMe3), ( 1 ), is compared to a just recently published. The reaction of the starting material, the phosphane Ph2P(CH2Py) with N3SiMe3 in the presence of water gives [Ph2P(CH2Py)(NH2)][N3], ( 2 ). A comparison of the structural and NMR parameters of 2 with previously reported derivatives of 1 , suggests that 2 is best described as a phosphonium salt in which the negatively charged imino nitrogen atom is protonated, according to [Ph2(CH2Py)P+—NH2][N3], rather than as an iminiumphosphane salt [Ph2(CH2Py)P=+NH2][N3].  相似文献   

9.
The time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) positive and negative ion spectra of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) were analyzed using density functional theory calculations. Most of the ions from these structural isomers shared the same accurate mass, but had different relative abundance. This could be attributed to the fact that from a thermodynamics perspective, the disparity in the molecular structures can affect the ion stability if we assume that they shared the same mechanistic pathway of formation with similar reaction kinetics. The molecular structures of these ions were assigned, and their stability was evaluated based on calculations using the Kohn‐Sham density functional theory with Becke's 3‐parameter Lee‐Yang‐Parr exchange‐correlation functional and a correlation‐consistent, polarized, valence, double‐zeta basis set for cations and the same basis set with a triple‐zeta for anions. The computational results agreed with the experimental observations that the nitrogen‐containing cations such as C5H4N+ (m/z = 78), C8H7N (m/z = 117), C8H8N+ (m/z = 118), C9H8N+ (m/z = 130), C13H11N2+ (m/z = 195), C14H13N2+ (m/z = 209), C15H15N2+ (m/z = 223), and C21H22N3+ (m/z = 316) ions were more favorably formed in P2VP than in P4VP due to higher ion stability because the calculated total energies of these cations were more negative when the nitrogen was situated at the ortho position. Nevertheless, our assumption was invalid in the formation of positive ions such as C6H7N+˙ (m/z = 93) and C8H10N+ (m/z = 120). Their formation did not necessarily depend on the ion stability. Instead, the transition state chemistry and the matrix effect both played a role. In the negative ion spectra, we found that nitrogen‐containing anions such as C5H4N? (m/z = 78), C6H6N? (m/z = 92), C7H6N? (m/z = 104), C8H6N? (m/z = 116), C9H10N? (m/z = 132), C13H11N2? (m/z = 195), and C14H13N2? (m/z = 209) ions were more favorably formed in P4VP, which is in line with our computational results without exception. We speculate that whether anions would form from P2VP and P4VP is more dependent on the stability of the ions.  相似文献   

10.
Abstract— The acid dissociation constants of protonated all-trans retinal Schiff base (SB-H+) in a 50% water-methanol solution at 0°C is 6–95 for the ground state and nominally 16–65 for the first excited singlet state, with a potential range of ? 12–21. These values are in qualitative agreement with the results of semiempirical MO calculations, which indicate that the total charge density on nitrogen is greater in the first excited singlet than in the ground state (QN* > QN). However, pertinent to vision, CNDO/2 calculations on all-trans and 11-cis Schiff base and SB-H+ indicate that, for torsional angles of approximately 80–100° around the 11–12 double bond, QN* < QN. This result suggests that it may be possible for the proton to come off the imine nitrogen during isomerization from 11 -cis SB-H+ to all-trans SB-H+. The potential consequence of this during isomerization of rhodopsin is the initiation of unfolding of the protein opsin.  相似文献   

11.
Nitrous oxide (N2O) is an intermediate compound formed during catalysis occurring in automobile exhaust pipes. In this work, the N2O capture and activation by Pt and Pd atoms in the ground and excited states of many multiplicities are studied. Pt and Pd + N2O reactions are studied at multireference second‐order perturbation level of theory using Cs symmetry. The PtN2O (1A′, 5A′, and 5A″) species are spontaneously created from excited states. Only the 5A′ and 5A″ states exhibit N2O activation reaction paths when N2O approaches Pt end‐on by the N or O atoms side or side‐on yielding NO or N2 as products, respectively. Pt+ cations ground and excited states, capture N2O, although only Pt+ (6A′ and 6A″) states show N2O activation yielding O and N2 as products. In the Pd atom case, PdN2O (1A′ and 5A″) species are also spontaneously created from excited states. The 5A″ state exhibits N2O activation yielding N2 + O as products. Pd+ cations in both ground and excited states capture N2O; however, only the [PdN2O]+ (4A′, 4A″, 6A′, and 6A″) states in side‐on approaches and (6A′) in end‐on approach activate the N2O and yield the N2 bounded to the metal and O as product. The results obtained in this work are discussed and compared with previous calculations of Rh and Au atoms. The reaction paths show a metal–gas dative covalent bonding character. Löwdin charge population analyses for Pt and Pd active states show a binding done through charge donation and retrodonation between the metals and N2O. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.  相似文献   

13.
Ding Liu 《Acta Physico》2008,24(9):1584-1588
Photodegradation of a textile dye X3B and photoreduction of dichromate (Cr(VI)) in an acidic aqueous solution were studied under 320 nm cut-off UV light irradiation in the presence of two polyoxometalates (POM), H3PW12O40 (PW), and H4SiW12O40 (SiW). The reactions in POM-X3B-Cr(VI) system were faster than those in POM-X3B, POM-Cr(VI), and X3B-Cr(VI) systems. For all reactions, PW was more photoactive than SiW. The reaction rates were proportional to the initial concentration of each component. The effects of N2, O2, and air were small but regular, indicating Cr(VI) photoreduction by a reduced POM. Quenching experiments with H2O2 and ethanol revealed that X3B photodegradation mainly occurred through hydroxyl radical (OH). It was proposed that the production of OH and a reduced POM by the reaction between H2O and excited POM* was the rate determining step, with which all evidence could be well interpreted. Different effects of POM concentration in a two- or three-component system on the reaction rates suggested that the reaction between H2O and excited POM* was reversible.  相似文献   

14.
The kinetics of oxidation of [CrIIIcdta(H2O)]? and [CrIIIdtpa(H2O)]2? (where cdta = trans‐1,2‐diaminocyclohexane‐N,N,N′,N′‐tetraacetate and dtpa = diethylenetriaminepentaacetate) by periodate ion has been studied in aqueous solutions. The oxidation of these complexes was carried out in the pH range 5.52–7.44 for the [CrIIIcdta(H2O)]? complex and the pH range 5.56–8.56 for the [CrIIIdtpa(H2O)]2? complex. The reaction exhibited an uncommon second‐order dependence on [CrIIIL(H2O)]n (L = cdta or dtpa and n=?1 or ?2, respectively) and a first‐order dependence on [IO?4]. At fixed reaction conditions, the reaction rate is described by Eq. (i). The third‐order rate constant, k3, varied with [H+] according to Eq. (ii). (i) (ii) A mechanism in which simultaneous one‐electron transfer from two [CrIIIL(OH)]n?1 ions to I(VII) is proposed. The two [CrIIIL(OH)]n?1 ions are bridged to I(VII) via the hydroxo group. Periodate ion is known to undergo rapid substitution or expansion of its coordination number from four to six. The activation parameters ΔH* and ΔS* were calculated using the Eyring equation. The relatively high negative values of ΔS* are consistent with an associative process preceding electron transfer. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 729–735, 2012  相似文献   

15.
The rate constants for proton transfer from H3+ ions to N2, O2, and CO have been measured as function of hydrogen buffer gas partial pressure. The rate constant for proton transfer from H3+ to N2 shows a very large pressure dependence, increasing from 1.0 × 10?9 cm3/s at low H2 partial pressures to 1.7 × 10?9 cm3/s at high H2 partial pressures. The rate constants for proton transfer from H3+ to O2 and CO are constant with partial pressure of H2; giving values of 6.4 × 10?10 cm3/s and 1.7 × 10?9 cm3/s, respectively. The roles of excess vibrational energy in H3+ ions and of equilibrium between forward and back reaction are discussed. Back reaction is observed only for the reaction of H3+ ions with O2, and an equilibrium constant of K = 2.0 ± 0.4 at 298 K has been determined. From these data the proton affinity of O2 is deduced to be 0.47 ± 0.11 kcal/mole higher than that of H2.  相似文献   

16.
The deposition of diamondlike carbon (DLC) film and the measurements of ionic species by means of mass spectrometry were carried out in a CH4/N2 RF (13.56 MHz) plasma at 0.1 Torr. The film deposition rate greatly depended on both CH4/N2 composition ratio and RF power input. It was decreased monotonically as CH4 content decreased in the plasma and then rapidly diminished to negligible amounts at a critical CH4 content, which became large for higher RF power. The rate increased with increasing RF power, reaching a maximum value in 40% CH4 plasma. The predominant ionic products in CH4/N2 plasma were NH+ 4 and CH4N+ ions, which were produced by reactions of hydrocarbon ions, such as CH+ 3, CH+ 2, CH+ 5, and C2H+ 5 with NH3 molecules in the plasma. It was speculated that the production of NH+ 4 ion induced the decrease of C2H+ 5 ion density in the plasma, which caused a reduction in higher hydrocarbon ions densities and, accordingly, in film deposition rate. The N+ 2 ion sputtering also plays a major role in a reduction of film deposition rate for relatively large RF powers. The incorporation of nitrogen atoms into the bonding network of the DLC film deposited was greatly suppressed at present gas pressure conditions.  相似文献   

17.
Chemiionization of alkali atoms by active nitrogen is studied in a crossed beam apparatus. Vibrationally excited N2 in the electronic ground state is responsible for the ionization rather than electronically excited N2 in the A 3u+ state. The ionization cross section is of the order 102 A2. The experimental data is consistent with the distribution of the vibrational levels of N2 (X1g+) predicted by Bray or Caledonia and Center.  相似文献   

18.
An ab initio analysis on the involved potential energy surfaces is presented for the investigation of the charge transfer mechanism for the He++N2 system. At high collision energy, as many as seven low-lying electronic states are observed to be involved in the charge transfer mechanism. Potential energy surfaces for these low-lying electronic states have been computed in the Jacobi scattering coordinates, applying multireference configuration interaction level of theory and aug-cc-pVQZ basis sets. Asymptotes for the ground and various excited states are assigned to mark the entrance (He++N2) and charge transfer channels (He+N2+). Nonadiabatic coupling matrix elements and quasi-diabatic potential energy surfaces have been computed for all seven states to rationalize the available experimental data on the charge transfer processes and to facilitate dynamics studies.  相似文献   

19.
Mass spectra of the three isomeric vinylimidazoles have been compared and the structures of the fragment ions [C3H4N2] and [C5H5N2]+ have been investigated by collisionally activated dissociation mass spectrometry. The greater part of the non-decomposing ions m/z 68 from 2-vinylimidazole and from 2-imidazolecarboxylic acid methyl ester, and a minor part of this ion formed from the free acid, all have the same structure: the imidazole ring system, with hydrogens at both nitrogen atoms but none at C(2). An analogous structure, with an ethyl group at C(2), is proposed for the m/z 93 ion from 2-vinylimidazole.  相似文献   

20.
Whereas synthetically catalyzed nitrogen reduction (N2R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2H4) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3B) Fe catalyst, P3BFe+, significantly alters its product profile to increase N2H4 versus NH3; P3BFe+ is otherwise known to be highly selective for NH3. We posit a key terminal hydrazido intermediate, P3BFe=NNH2, as selectivity-determining. Whereas its singlet ground state undergoes protonation to liberate NH3, a low-lying triplet excited state leads to reactivity at Nα and formation of N2H4. Associated electrochemical and spectroscopic studies establish that N2H4 lies along a unique product pathway; NH3 is not produced from N2H4. Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号