首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Chloroberyllates with Nitrogen Donor Ligands. Crystal Structures of (Ph4P)[BeCl3(py)], (Ph4P)2[(BeCl3)2(tmeda)], (Ph4P)[BeCl2{(Me3SiN)2CPh}], and (Ph4P)2[BeCl4] · 2CH2Cl2 The title compounds were obtained as colourless, moisture sensitive crystals by reactions of (Ph4P)2[Be2Cl6] with pyridine, tmeda (N, N′‐tetramethylethylendiamine), or with the silylated benzamidine PhC—[N(SiMe3)2(NSiMe3)], whereas the tetrachloro beryllate was isolated as a by‐product from a solution in dichloromethane in the presence of the silylated phosphaneimine Me3SiNP(tol)3. All compounds were characterized by crystal structure determinations and by IR spectroscopy. (Ph4P)[BeCl3(Py)] ( 1 ): Space group Pbcm, Z = 4, lattice dimensions at 193 K: a = 756.2(1), b = 1739.2(2), c = 2016.3(2) pm, R1 = 0.0626. The complex anion contains tetrahedrally coordinated beryllium atom with a Be—N distance of 176.5 pm. (Ph4P)2[(BeCl3)2(tmeda)]·2CH2Cl2 ( 2 ·2CH2Cl2). Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1072.7(1), b = 1132.6(1), c = 1248.9(1) pm, α = 95.34(1)°, β = 92.80(1)°, γ = 90.81(1)°, R1 = 0.0344. Both nitrogen atoms of the tmeda molecule coordinate with BeCl3 units forming the centrosymmetric complex anion with Be—N distances of 181.3 pm. (PPh4)[BeCl2{(Me3SiN)2CPh}] ( 3 ). Space group C2, Z = 2, lattice dimensions at 193 K: a = 1255.4(2), b = 1401.9(2), c = 1085.2(2) pm, R1 = 0.0288. In the complex anion the benzamidinato ligand {(Me3SiN)2CPh} acts as chelate with Be—N distances of 174.9 pm. (Ph4P)2[BeCl4]·2CH2Cl2 ( 4 ·2CH2Cl2). Space group P2/c, Z = 4, lattice dimensions at 193 K: a = 2295.4(1), b = 982.5(1), c = 2197.2(2) pm, β = 99.19(1)°, R1 = 0.0586. 4 ·2CH2Cl2 contains nearly ideal tetrahedral [BeCl4]2— ions, like the previously described 4 ·2, 5CH2Cl2, which crystallizes in the space group P1¯, with Be—Cl distances of 203.4 pm on average.  相似文献   

2.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

3.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

4.
On Reactions of Hexachlorodiberyllate with Trimethylsilyl‐N‐dimethylamide. Crystal Structures of (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)], (Ph4P)[BeCl3(HNMe2)], and (Ph4P)(H2NMe2)[BeCl4] Reactions of bis‐tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], with trimethylsilyl‐N‐dimethylamide under different conditions lead to the novel chloroberyllate derivatives (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)] ( 1 ), (Ph4P)[BeCl3(HNMe2)] ( 2 ), and (Ph4P)(H2NMe2)[BeCl4] ( 3 ). 1 ‐ 3 were characterized by IR spectroscopy and crystal structure determinations. 1· 4CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1115.6(1), b = 2110.7(2), c = 2145.0(3) pm, α = 71.38(1)°, β = 85.66(1)°, γ = 85.24(1)°, R1 = 0.0732. The [Be2Cl5(OSiMe3)]2— ion in the structure of 1 is derived from the [Be2Cl6]2— ion by substitution of a μ‐Cl ligand by the oxygen atom of the (OSiMe3) group. The second anion, [BeCl3(Me2NSiMe3)], can be described as donor acceptor complex with a short Be—N bond of 179(1) pm. 2 : Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1063.1(1), b = 1072.0(1), c = 1238.3(1) pm, α = 87.55(1)°, β = 74.86(1)°, γ = 69.73(1)°, R1 = 0.0299. The anion of 2 forms a centrosymmetric dimer [BeCl3(HNMe2)]22— via N—H···Cl bridges of the two donor acceptor complex units with Be—N separations of 175.2(2) pm. 3 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 926.9(1), b = 2164.7(1), c = 2732.7(1) pm, R1 = 0.0495. The structure of 3 contains centrosymmetric ion quadrupoles [(Me2NH2)(BeCl4)]22— forming by N—H···Cl bridges between (Me2NH2)+ and [BeCl4]2— ions.  相似文献   

5.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

6.
Pyridinium Chlorometallates of Lanthanoid Elements. Crystal Structures of [HPy]2[LnCl5(Py)] mit Ln = Eu, Er, Yb und von [H(Py)2][YbCl4(Py)2] · Py The pyridinium chlorometallates [HPy]2[LnCl5(Py)] with Ln = Eu, Er and Yb, as well as [H(Py)2][YbCl4(Py)2]·Py have been obtained by the reaction of diacetone alcohol with solutions of the corresponding metal trichlorides in pyridine at 100 °C. According to the crystal structure determinations the anions [LnCl5(Py)]2— are linked by bifurcated Cl···H···Cl bridges with the protons of the [HPy]+ cations forming chains along [001]. The anions of [H(Py)2][YbCl4(Py)2]·Py form discrete octahedrons with trans‐positions of the pyridine ligands. [HPy]2[EuCl5(Py)] ( 1a ): Space group Pnma, Z = 4, lattice dimensions at —80 °C: a = 1874.4(2), b = 1490.2(2), c = 741.5(1) pm, R1 = 0.0466. [HPy]2[ErCl5(Py)] ( 1b ): Space group Pnma, Z = 4, lattice dimensions at —80 °C: a = 1864.3(1), b = 1480.7(2), c = 739.7(1) pm, R1 = 0.0314. [HPy]2[YbCl5(Py)] ( 1c ): Space group Pnma, Z = 4, lattice dimensions at —80 °C: a = 1858.9(2), b = 1479.0(1), c = 736.8(1) pm, R1 = 0.0306. [H(Py)2][YbCl4(Py)2]·Py ( 2 ·Py): Space group Ia, Z = 4, lattice dimensions at —80 °C: a = 1865.5(1), b = 827.5(1), c = 1873.4(1) pm, ß = 103.97(1)°, R1 = 0.0258.  相似文献   

7.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

8.
Synthesis and Crystal Structures of the Acetonitrile “Adducts” of Tetraphenylphosphonium Tetrachloroterbate(III) and -dysprosate(III), (Ph4P)TbCl4(CH3CN) and (Ph4P)DyCl4(CH3CN) Single crystals of (Ph4P)TbCl4(CH3CN) ( 1 ) and (Ph4P)DyCl4(CH3CN) ( 2 ) are obtained from the reaction of TbCl3 and DyCl3, respectively, with tetraphenylphosphonium chloride in acetonitrile. The crystal structures [monoclinic, P21/n (Nr. 14), Z = 4, a = 1065.5(4)/997.3(5) ( 1/2 ); b = 2160.4(5)/1835.8(7); c = 1232.7(3)/1626.7(5) pm, β = 98.82(3)/104.67(4)°; R1 = 0.0463/0.0469, wR2 = 0.1051/0.0971 for I > 2σ(I)] contain the dimeric anions [M22-Cl)21-Cl)6(CH3CN)2]2– (M = Tb, Dy) and (Ph4P)+ cations in slightly different packing modes.  相似文献   

9.
The reaction of the electronically unsaturated platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) with Ph2PCH2CH2CH2SPh ( 2 ) leads selectively to the formation of the acetyl(chlorido) platinum(II) complex (SP‐4‐3)‐[Pt(COMe)Cl(Ph2PCH2CH2CH2SPh‐κPS)] ( 4 ) having the γ‐phosphinofunctionalized propyl phenyl sulfide coordinated in a bidentate fashion (κPS). In boiling benzene complex 4 undergoes decarbonylation yielding the methyl(chlorido) platinum(II) complex (SP‐4‐3)‐[PtMeCl(Ph2PCH2CH2CH2SPh‐κPS)] ( 6 ). However, the reaction of 1 with the analogous γ‐diphenylphosphinofunctionalized propyl phenyl sulfone Ph2PCH2CH2CH2SO2Ph ( 3 ) affords the acetyl(chlorido) platinum(II) complex (SP‐4‐4)‐[Pt(COMe)Cl(Ph2PCH2CH2CH2SO2Ph‐κP)2] ( 5 ). In boiling benzene complex 5 undergoes a CO extrusion yielding (SP‐4‐4)‐[PtMeCl(Ph2PCH2CH2CH2SO2Ph‐κP)2] ( 8 ) whereas in presence of 1 the formation of the carbonyl complex (SP‐4‐3)‐[PtMeCl(CO)(Ph2PCH2CH2CH2SO2Ph‐κP)] ( 7 ) is observed. Addition of Ag[BF4] to complex 5 leads to the formation of the cationic methyl(carbonyl) platinum(II) complex (SP‐4‐1)‐[PtMe(CO)(Ph2PCH2CH2CH2SO2Ph‐κP)2][BF4] ( 9 ). All complexes were characterized by microanalysis and NMR spectroscopy (1H, 13C, 31P) and complexes 4 and 6 additionally by single‐crystal X‐ray diffraction analyses.  相似文献   

10.
Oligophosphanide Anions: Syntheses and Molecular Structures of [K2(PMDETA)2(P4Ph4)], [K2(PMDETA)(P4tBu4)]2 and [K(PMDETA)(THF){cyclo‐(P5tBu4)}] (PMDETA = NMe(CH2CH2NMe2)2) The alkali metal tetraphosphanediides [K2(PMDETA)2(P4Ph4)] ( 1 ) and [K2(PMDETA)(P4tBu4)]2 ( 2 ) [PMDETA = NMe(CH2CH2NMe2)2] were synthesized via reaction of PhPCl2 or tBuPCl2 with 2.5 equiv. potassium and characterized by X‐ray crystallography and 31P NMR spectroscopy. As in other ion contact complexes of the type M2(P4R4) (M = alkali metal) the solid‐state structures are retained in solution. While 1 could be prepared in comparatively good yield (54 %), 2 was only isolated in very modest yield and with low purity as [K(PMDETA)(THF){cyclo‐(P5tBu4)}] ( 3 ) was formed as a side product in this case. 3 was also characterized by X‐ray crystallography and 31P NMR spectroscopy.  相似文献   

11.
《Polyhedron》2002,21(25-26):2639-2645
Unsymmetrical diphosphine ligands of the type Ph2P(CH2)nNHPPri 2 [n=2 (1), 3 (2)] have been obtained by reacting the appropriate (diphenylphosphino)alkylamine, Ph2P(CH2)nNH2 with chlorodi-iso-propylphosphine, in the presence of triethylamine. Reaction of Ph2P(CH2)2NHPPri 2 with PdCl2(PhCN)2, PtCl2(PhCN)2, PtMe2(cod) and PtClMe(cod), NiCl2·6H2O and Fe(CO)25-C5H5)I gives the corresponding chelate complexes, PdCl2L, PtX2L, NiCl2L and Fe(CO)(η5-C5H5)L. Reaction of Ph2P(CH2)3NHPPri 2 with PtCl2(PhCN)2, PtMe2(cod) and PdCl2(PhCN)2 yields the chelate complexes and reaction with PtClMe(cod) led to a 50:50 mixture of chelate isomers.  相似文献   

12.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

13.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

14.
The reactivity of the hydrolysis product of hexaphenylcarbodiphosphorane, PPh3CHP(O)Ph2, towards different soft Lewis acids, such as CuI and Ag[BF4] are reported. While CuI exclusively binds at the ylidic carbon atom, reaction of the silver cation in CH2Cl2 leads to proton abstraction from the solvent to give the cation [PPh3CH2P(O)Ph2]+. Surprisingly, Ag+ replaces the methyl group of [PPh3CHMeP(O)Ph2]+ to produce a dimeric complex, in which Ag+ is coordinated to C and O forming an eight membered ring. The compounds were characterized by spectroscopic methods and X‐ray diffraction.  相似文献   

15.
Complextrans-[Mo(N2)2(dppe)2] (dppe=Ph 2PCH2CH2PPh 2) reacts with NN=CHCOOEt in benzene solution to afford benzene-azomethane,Ph-N=N-CH3, as the main organic product. However, the phosphazene speciesPh 2P(N2CHCOOEt)(CH2CH2)P(N2CHCOOEt)Ph 2 is formed by irradiating aTHF solution oftrans-[W(N2)2(dppe)2] in the presence of ethyldiazoacetate; in moist solution, the phosphazene bonds undergo a partial hydrolysis, and the phosphonium species [Ph 2P(NHNCHCOOEt)(CH2CH2)P(NHNCHCOOEt)Ph 2]2+ appears to be formed.
Untersuchungen zu den Reaktionen der Distickstoff-Komplexetrans-[M(N2)2(Ph 2PCH2CH2PPh 2)2] (M=Mo oder W) mit Ethyldiazoacetat: Die Bildung einer Azoverbindung und eines Phosphazens
Zusammenfassung Die Komplexetrans-[Mo(N2)2(dppe)2] (dppe=Ph 2PCH2CH2PPh 2) reagieren mit NN=CHCOOEt in benzolischer Lösung zuPh-N=N-CH3 als organischem Hauptprodukt. Andererseits wird bei der Bestrahlung vontrans-[W(N2)2(dppe)2] inTHF-Lösung in der Gegenwart von Ethyldiazoacetat das PhosphazenPh 2P(N2CHCOOEt)(CH2CH2)P(N2CHCOOEt)Ph 2 gebildet; in feuchter Lösung erleidet die Phosphazen-Bindung eine teilweise Hydrolyse und die Phosphonium-Spezies [Ph 2P(NHNCHCOOEt)(CH2CH2)P(NHNCHCOOEt)Ph 2]2+ scheint gebildet zu werden.
  相似文献   

16.
The reaction of Ph2P(S)N(SiMe3)2 with potassium tert-butoxide in a 1:1 molar ratio produces K[Ph2P(S)NSiMe3], which was converted to the AsPh4+ salt by metathesis with [AsPh4]Cl. The X-ray crystal structure of [AsPh4][Ph2P(S)NSiMe3] · 0.5 THF consists of noninteracting AsPh4+ and Ph2P(S)NSiMe3? ions with d(P? S) = 1.980(4) Å and d(P? N) = 1.555(8) Å. The PNSi bite angle in the anion is 136.3(5)°. Electrophilic attack by Ph2P(S)Cl occurs at the sulfur atom of Ph2P(S)NSiMe3?. The oxidation of the anion with iodine produces a disulfide which regenerates K[Ph2P(S)NSiMe2] upon treatment with potassium tert-butoxide.  相似文献   

17.
The cluster compounds, [MoAu2S4(PPh2Py)2] ( 1 ) and [WAu2S4(PPh2Py)2] ( 2 ), were synthesized by the reaction of (NH4)2MS4 (M = Mo, W), H[AuCl4]·4H2O and diphenyl‐2‐pyridyl‐phosphine (PPh2Py) in CH2Cl2 solution. [MoAu2S4(PPh2Py)2] crystallizes in the monoclinic space group P21/c with a = 18.385(2), b =12.304(1), c = 16.904(2) Å, β =110.722(2)°, and Z = 4. [WAu2S4(PPh2Py)2] crystallizes in the triclinic space group P‐1 with a = 9.333 (3), b = 10.628(3), c = 19.566(6) Å, α = 89.26(1), β = 80.87(1), γ = 68.85(1)°, and Z = 2. Single crystal X‐ray analysis showed that these two compounds are isostructural, but belong to different space groups. The Mo (W) atom has a slightly distorted tetrahedral coordination, and the two Au atoms are distorted from trigonal planar, the P—Au—M—Au—P chain is nearly linear. Measurement of the nonlinear optical (NLO) properties using the Z‐scan technique with an 8‐ns pulsed laser at 532 nm showed that 1 and 2 possess NLO absorption and effective self‐focusing effect. The effective α2 and n2 values of cluster 1 are 5.89 × 10—12 m · W—1 and 6.45 × 10—18 m2 · W—1; the effective α2 and n2 values of compound 2 are 4.35 × 10—11 m · W—1 and 3.73 × 10—17 m2 · W—1.  相似文献   

18.
Reactions of S4N4 with diphosphines, Ph2P(X)PPh2 (X = NC4H8N, CH2CH2) have resulted in the isolation of N3S3? NPPh2(X)Ph2PN? S3N3 (X = NC4H8N, CH2CH2), (S)PPh2(CH2CH2)Ph2PN? S3N3, and (S)PPh2NC4H8NPh2P(S) as new compounds. These heterocycles have been characterized by analytical and spectroscopic (IR, UV-VIS, 1H and 31P-NMR, and MS) techniques.  相似文献   

19.
The behavior of the phosphine-phosphine sulfide complexes of silver, [Ph2P(S)(CH2) n PPh2] m ·AgNO3 (n=2 or 4;m=1 or 2), in pyridine was studied. Dissolution of the 1:1 complexes in pyridine leads to destruction of their dimeric structures Ag2[Ph2P(S)(CH2) n PPh2]2(NO3)2 (A) to form the complexes Agpy +−P(Ph2)(CH2) n Ph2P=S and Agpy +−S=PPh2(CH2) n PPh2. The solid complexes isolated from pyridine restore dimeric structure A. According to the data of X-ray diffraction analysis, the 1:2 complex isolated from pyridine has the structure [S=P(Ph2)(CH2)2(Ph2)P−(NO3)Ag(Py)−P(Ph2) (CH2)2(Ph2)P=S]Py. According to the data of IR spectroscopy, dissolution of this complex in chloroform leads to the formation of the dimeric structure Ag2Ph2P(S)(CH2)2PPh2]4(NO3)2. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1751–1758, September, 1998.  相似文献   

20.
The nitrate anion coordinates to the Sn? CH2? Sn unit of the title phosphonium stannate, [Ph4P]+ [(Ph2ClSn)2CH2 ·NO3]?, to give a six‐membered ring having the penta‐coordinated tin atoms in a trigonal bipyramidal geometry. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号