首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitriding phenomena that occur on the surfaces of pure Fe and Fe? Cr alloy (16 wt% Cr) samples were investigated. An Ar + N2 mixture‐gas glow‐discharge plasma was used so that surface nitriding could occur on a clean surface etched by Ar+ ion sputtering. In addition, the metal substrates were kept at a low temperature to suppress the diffusion of nitrogen. These plasma‐nitriding conditions enabled us to characterize the surface reaction between nitrogen radicals and the metal substrates. The emission characteristics of the band heads of the nitrogen molecule ion (N2+) and nitrogen molecule from the glow‐discharge plasma suggest that the active nitrogen molecule is probably the major nitriding reactant. AES and angle‐resolved XPS were used to characterize the thickness of the nitride layer and the concentration of elements and chemical species in the nitride layer. The thickness of the nitride layer did not depend on the metal substrate type. An oxide layer with a thickness of a few nanometers was formed on the top of the nitride layer during the nitriding process. The oxide layer consisted of several species of Nx‐Fey‐O, NO+, and NO2?. In the Fe? Cr alloy sample, these oxide species could be reduced because chromium is preferentially nitrided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Electric-discharge nitrogen comprises three main types of excited nitrogen species-atomic nitrogen (Natom), excited nitrogen molecules (N2*), and nitrogen ions (N2+) – which have different lifetimes and reactivities. In particular, the interfacial reaction locus between the discharged nitrogen and the water phase produces nitrogen compounds such as ammonia and nitrate ions (denoted as N-compounds generically); this is referred to as the plasma/liquid interfacial (P/L) reaction. The Natom amount was analyzed quantitatively to clarify the contribution of Natom to the P/L reaction. We focused on the quantitative relationship between Natom and the produced N-compounds, and found that both N2* and N2+, which are active species other than Natom, contributed to P/L reaction. The production of N-compounds from N2* and N2+ was enhanced upon UV irradiation of the water phase, but the production of N-compounds from Natom did not increase by UV irradiation. These results revealed that the P/L reactions starting from Natom and those starting from N2* and N2+ follow different mechanisms.  相似文献   

3.
The thermal gas‐phase catalytic reduction of N2O by CO, mediated by the transition‐metal nitride cluster ion [NbN]+, has been explored by using FT‐ICR mass spectrometry and complemented by high‐level quantum chemical calculations. In contrast to the [Nb]+/[NbO]+ and [NbO]+/[Nb(O)2]+ systems, in which the oxidation of [Nb]+ and [NbO]+ with N2O is facile, but in which neither [NbO]+ nor [Nb(O)2]+ react with CO at room temperature, the [NbN]+/[ONbN]+ system at ambient temperature mediates the catalytic oxidation of CO. The origins of the distinctly different reactivities upon nitrogen ligation are addressed by quantum chemical calculations.  相似文献   

4.
Thermal nitrogen fixation relies on strong reductants to overcome the extraordinarily large N?N bond energy. Photochemical strategies that drive N2 fixation are scarcely developed. Here, the synthesis of a dinuclear N2‐bridged complex is presented upon reduction of a rhenium(III) pincer platform. Photochemical splitting into terminal nitride complexes is triggered by visible light. Clean nitrogen transfer with benzoyl chloride to free benzamide and benzonitrile is enabled by cooperative 2 H+/2 e? transfer of the pincer ligand. A three‐step cycle is demonstrated for N2 to nitrile fixation that relies on electrochemical reduction, photochemical N2‐splitting and thermal nitrogen transfer.  相似文献   

5.
We report that the surface chemical properties of muscovite mica [KAl2(Si3Al)O10(OH)2] like important multi-elemental layered substrate can be precisely tailored by ion bombardment. The detailed X-ray photoelectron spectroscopic studies of a freshly cleaved as well as 12-keV Ar+ and N+ ion bombarded muscovite mica surfaces show immense changes of the surface composition due to preferential sputtering of different elements and the chemical reaction of implanted ions with the surface. We observe that the K atoms on the upper layer of mica surface are sputtered most during the N+ or Ar+ ions sputtering, and the negative aluminosilicate layer is exposed. Inactive Ar atoms are trapped, whereas chemically reactive N atoms form silicon nitride (Si3N4) and aluminum nitride (AlN) during implantation. On exposure to air after ion bombardment, the mica surface becomes more active to adsorb C than the virgin surface. The adsorbed C reacts with Si in the aluminosilicate layer and forms silicon carbide (SiC) for both Ar and N bombarded mica surfaces. Besides the surface chemical change, prolonged ion bombardment develops a periodic ripple like regular pattern on the surface.  相似文献   

6.
In the present work, the plasma nitriding behavior of a nickel based dental alloy was investigated. Plasma nitriding experiments carried out under constant gas mixture (15% H2?C85% N2) for different process parameters including time (4, 6, 10, and 20 h) and temperature (400, 450, 500, and 550 °C). Depending on nitriding parameters, it was found that triple or double layers formed on the surface of the samples. Increasing of treatment time and temperature has resulted in a double layer. ??N1 layer was in formed all nitrided samples. However, ??N2 layer is formed only at low temperatures and in short times. Layer growth of nickel based alloys increases until a critical time or a critical temperature reached. Above these critical values, it is observed that the layer thickness decreases. It was also found that plasma nitriding not only increases the surface hardness but also improves the wear resistance of nickel based dental alloy. The maximum wear resistance was observed at 400 °C for 10 h due to the high hardness and thickness of the nitride layers.  相似文献   

7.
Optical emission spectroscopy of the active species in N2 plasma is carried out to investigate their concentration as a function of discharge parameters such as filling pressure (2.0–7.0 mbar), source power (100–200 W) and gas flow rate (50–300 mg/min). The primary motivation of this work is to obtain reliable information about the concentration of the active species of N2 plasma, which play an important role in plasma surface nitriding processes. Emission intensity from the selected electronic excited states of molecular and atomic species is evaluated as a function of discharge parameters to investigate their concentration. The emission intensity ratio I(N2+)/I(N2) and I(N+)/I(N) of the electronic transitions is also evaluated as a function of discharge parameters to investigate the relative dependence of their concentrations. It is observed that the concentration of the active species of N2 plasma is strongly affected by the filling pressure and source power whereas flow rate has no significant effect. An increased occurrence of N2+ molecular ions in comparison with N2 molecules, and N+ ions in comparison with N atoms is observed with source power whereas decreased occurrence of N2+ molecular ions in comparison with N2 molecules, and N+ ions in comparison with N atoms is observed with the rise in filling pressure.  相似文献   

8.
Using ionic source assistant, Ti and N co‐doped amorphous C (α‐C:N:Ti) thin films were prepared by pulse cathode arc technique. Microstructure, composition, elemental distribution, morphology, and mechanical properties of α‐C:N:Ti films were investigated in dependence of nitrogen source, pulse frequency, and target current by Raman spectroscopy, X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, nanoindentation, and surface profilometer. The results show the presence of titanium carbide and nitride in a‐C:N:Ti films. The α‐C:N+:Ti film (6 Hz, 60 A) shows the smaller size and the higher disordering degree of Csp2 clusters. The α‐C:N+:Ti films present smoother surface and smaller particle size than for α‐C:N2:Ti films. N ions facilitate the formation of N‐sp3C bonds in the α‐C:N+:Ti films, and α‐C:N+:Ti (10 Hz, 80 A) film possesses the more graphite‐like N bonds. Higher hardness and lower residual stress present in the α‐C:N2:Ti (10 Hz, 80 A) film.  相似文献   

9.
Five‐coordinate Cr(N)(salen) {salen is 2,2′‐[ethane‐1,2‐diylbis(nitrilomethylidyne)]diphenolate} reacts with [RhCl(COD)]2 (COD is 1,5‐cyclooctadiene) to yield the heterobimetallic nitride‐bridged title compound, namely chlorido‐2κCl‐[2(η4)‐1,5‐cyclooctadiene]{2,2′‐[ethane‐1,2‐diylbis(nitrilomethylidyne)]diphenolato‐1κ4O,N,N′,O′}‐μ‐nitrido‐1:2κ2N:N‐chromium(V)rhodium(I), [CrRh(C16H14N2O2)ClN(C8H12)]. The Cr—N bond of 1.5936 (14) Å is elongated by only 0.035 Å compared to the terminal Cr—N bond in the precursor. The nitride bridge is close to being linear [173.03 (9)°] and the Rh—N bond of 1.9594 (14) Å is very short for a monodentate nitrogen‐donor ligand, indicating significant π‐acceptor character of the Cr[triple‐bond]N group.  相似文献   

10.
We report the synthesis of anionic diniobium hydride complexes with a series of alkali metal cations (Li+, Na+, and K+) and the counterion dependence of their reactivity with N2. Exposure of these complexes to N2 initially produces the corresponding side‐on end‐on N2 complexes, the fate of which depends on the nature of countercations. The lithium derivative undergoes stepwise migratory insertion of the hydride ligands onto the aryloxide units, yielding the end‐on bridging N2 complex. For the potassium derivative, the N?N bond cleavage takes place along with H2 elimination to form the nitride complex. Treatment of the side‐on end‐on N2 complex with Me3SiCl results in silylation of the terminal N atom and subsequent N?N bond cleavage along with H2 elimination, giving the nitride‐imide‐bridged diniobium complex.  相似文献   

11.
The formation of O2? radical anions by contact of O2 molecules with a Na pre‐covered MgO surface is studied by a combined EPR and quantum chemical approach. Na atoms deposited on polycrystalline MgO samples are brought into contact with O2. The typical EPR signal of isolated Na atoms disappears when the reaction with O2 takes place and new paramagnetic species are observed, which are attributed to different surface‐stabilised O2? radicals. Hyperfine sublevel correlation (HYSCORE) spectroscopy allows the superhyperfine interaction tensor of O2?Na+ species to be determined, demonstrating the direct coordination of the O2? adsorbate to surface Na+ cations. DFT calculations enable the structural details of the formed species to be determined. Matrix‐isolated alkali superoxides are used as a standard to enable comparison of the formed species, revealing important and unexpected contributions of the MgO matrix in determining the electronic structure of the surface‐stabilised Na+? O2? complexes.  相似文献   

12.
The electrochemical N2 fixation, which is far from practical application in aqueous solution under ambient conditions, is extremely challenging and requires a rational design of electrocatalytic centers. We observed that bismuth (Bi) might be a promising candidate for this task because of its weak binding with H adatoms, which increases the selectivity and production rate. Furthermore, we successfully synthesized defect‐rich Bi nanoplates as an efficient noble‐metal‐free N2 reduction electrocatalyst via a low‐temperature plasma bombardment approach. When exclusively using 1H NMR measurements with N2 gas as a quantitative testing method, the defect‐rich Bi(110) nanoplates achieved a 15NH3 production rate of 5.453 μg mgBi?1 h?1 and a Faradaic efficiency of 11.68 % at ?0.6 V vs. RHE in aqueous solution at ambient conditions.  相似文献   

13.
Mass-selected beams of N+ and N2+ in the energy range 5–50 eV react with molybdenum to produce a surface nitride. The relative reaction cross section for N+ reaction is higher than that of N2+ in the range 5–25 eV and N2+ exhibits a reaction threshold near 7 eV. The N2+ threshold suggests collisional dissociation prior to reaction.  相似文献   

14.
The plasma synthesis of ammonia was stuided at pressures of 1–5 torr and flow rates of up to 200 torr cm3 min–1 using Pyrex and silver surfaces cooled to 77 K. The N conversion to ammonia was about 13% in experiments in which the afterglow was trapped on the Pyrex surface. By quenching the plasma rather than the afterglow, the percent N conversion could be doubled using the Pyrex surface and quadrupled using the silver surface. Increasing the hydrogen pressure and/or hydrogen discharge cleaning decreased the percent N conversion; nitrogen discharge conditioning had no significant effect. With increasing nitrogen flow rate the percent N conversion decreased linearly in the quenched plasma reaction on the silver surface, suggesting nitriding and reduction by hydrogen to form ammonia. The exponential decrease of the percent N conversion in the quenched afterglow reaction on the Pyrex surface is explained by the formation and/or dissociation of adsorbed N2 determining the ammonia yield at 77 K.  相似文献   

15.
Within the framework of the study of industrial nitriding of steel, AES was chosen as the principle analysis technique. In order to characterise the nitrided layers quantitatively, reliable sensitivity factors were needed. For that purpose, different reference samples containing the pure γ′‐Fe4N1?x and ε‐Fe2N1?z phases were prepared by gaseous nitriding of pure iron. The characterisation of these references by means of electron probe microanalysis (EPMA) is discussed. The first sample contained a nitrided layer with large γ′‐Fe4N1?x grains (~30 µm) with 19.6 at.% nitrogen on top of an iron substrate. The second one contained an ε‐Fe2N1?z outer layer (~6 µm) with 26 at.% nitrogen, on a γ′‐Fe4N1?x layer (~4 µm) with 19.8 at.% nitrogen, created on top of an iron substrate. In this study, Fe LMM and N KLL Auger electron spectral lines were acquired on the pure γ′‐Fe4N1?x and ε‐Fe2N1?z phases of these two reference samples in order to calculate the sensitivity factors of iron and nitrogen. Different Auger intensities were considered and compared. It was decided to use the peak areas of the direct Auger electron spectral lines. The values of the sensitivity factors are 0.74 for iron and 0.33 for nitrogen. Finally, a set of three independent and well‐characterised samples containing the γ′‐Fe4N1?x and ε‐Fe2N1?z phases was used to validate the elaborated quantification procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The 15N‐labelled iron dinitrogen complexes trans‐[FeH(N2)(PP)2]+[BPh4]? (PP = dppe, depe, dmpe) and cis‐[FeH(N2)(PP3)]+[BPh4]? were prepared in situ by exchange of unlabelled coordinated dinitrogen with 15N2. 15N NMR chemical shifts and coupling constants are reported. The 15N spectra exhibit separate signals for the metal‐bound and terminal nitrogen atoms of the coordinated N2. The 15N resonances display 15N, 15N coupling as well as 31P, 15N coupling and long‐range 15N, 1H coupling when there is a metal‐bound hydrido ligand. Exchange between free and coordinated dinitrogen was monitored by magnetization transfer between 15N‐labelled sites using an inversion–transfer–recovery experiment. Exchange between the metal‐bound and terminal nitrogen atoms of coordinated N2 was also monitored by magnetization transfer and this could proceed by N2 dissociation or by an intramolecular process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The methods of temperature-programmed reaction/desorption (TPR/TPD) are used to study azomethane (CH3N=NCH3) decomposition and the reactions of the products of its pyrolysis (CH 3 * radicals and N2) on the polycrystalline molybdenum surface. A TPR spectrum of adsorbed azomethane decomposition shows mainly N2, H2, and unreacted azomethane. Upon preliminary adsorption of azomethane pyrolysis products on a catalyst sample, a TPR spectrum shows N2, H2, and CH4 in comparable amounts. The difference in the composition of desorption products found for these two types of experiments shows that, in the decomposition of adsorbed azomethane, surface methyl moieties are not formed. The rate constants were calculated for the dissociation of adsorbed CH3, CH2, and CH, recombination of hydrogen atoms with each other and with CH3 and CH2, and the recombinative desorption of nitrogen atoms. Deceased.  相似文献   

19.
The targeted thermal condensation of a hexaazatriphenylene‐based precursor leads to porous and oxidation‐resistant (“noble”) carbons. Simple condensation of the pre‐aligned molecular precursor produces nitrogen‐rich carbons with C2N‐type stoichiometry. Despite the absence of any porogen and metal species involved in the synthesis, the specific surface areas of the molecular carbons reach up to 1000 m2 g?1 due to the significant microporosity of the materials. The content and type of nitrogen species is controllable by the carbonization temperature whilst porosity remains largely unaffected at the same time. The resulting noble carbons are distinguished by a highly polarizable micropore structure and have thus high adsorption affinity towards molecules such as H2O and CO2. This molecular precursor approach opens new possibilities for the synthesis of porous noble carbons under molecular control, providing access to the special physical properties of the C2N structure and extending the known spectrum of classical porous carbons.  相似文献   

20.
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry and as ionization source for ion mobility spectrometry. It turned out that dielectric barrier discharge ionization could be regarded as a soft ionization technique characterized by only minor fragmentation similar to atmospheric pressure chemical ionization (APCI). Mainly protonated molecules were detected. In order to characterize the soft ionization mechanism spatially resolved optical emission spectrometry (OES) measurements were performed on plasma jets burning either in He or in Ar. Besides to spatial intensity distributions of noble gas spectral lines, in both cases a special attention was paid to lines of N2+ and N2. The obtained mapping of the plasma jet shows very different number density distributions of relevant excited species. In the case of helium plasma jet, strong N2+ lines were observed. In contrast to that, the intensities of N2 lines in Ar were below the present detection limit. The positions of N2+ and N2 distribution maxima in helium indicate the regions where the highest efficiency of the water ionization and the protonation process is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号