首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used a very simplified electrostatic model based on charge and polarizability of atoms and groups on an organic ligand around a lanthanide ion to predict the near‐infrared electronic circular dichroism (NIR ECD) spectra of Yb3+ (a monoelectronic ion). We tuned our method by using two widely different complexes. The first was the heterobimetallic species CsYb(hfbc)4 [hfbc=(?)‐3‐heptafluorobutyrylcamphorate], in which the ligand is a diketonate and, as such, is endowed with a chromophore with strong UV absorption (π–π*). Its oxygen atoms define a square antiprism, which provides a symmetric coordination polyhedron. The second system was Yb DOTMA [DOTMA=(1R,4R,7R,10R)‐α,α′,α′′,α′′′‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid], a chiral Yb analogue of Gd DOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid), in which the ligand lacks relevant electronic transitions and provides a dissymmetric cage. The relative weights of dynamic (ligand polarization) and static contributions to Yb NIR ECD were evaluated, and the spectra appear to have been well predicted by theory through the introduction of a heuristic weight factor. To validate the approach and to confirm the value of the weight factor, we applied it to two other compounds, namely, Na3Yb(BINOLate)3 and Yb(BINOLAM)3 [BINOLate=2,2′‐dihydroxy‐1,1′‐binaphthyl; BINOLAM=3,3′‐bis(diethylaminomethyl)‐1‐1′‐bi‐2‐naphthol].  相似文献   

2.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

3.
A heteropolyoxotungstate, [Cu(en)2]2H8[Gd(PW11O39)2] ·?(H2en)0.5 ·?3H2O (1), has been hydrothermally synthesized and characterized by IR, XPS, TGA and single-crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system, space group P 1, with a =?12.651(2) Å3, b =?20.559(3) Å3, c =?21.729(3) Å3, α =?71.379(2), β =?82.829(2), γ =?75.532(2)°, V =?5179.5(14) Å3, Z =?2, R 1 =?0.0702 and ωR 2 =?0.1479. The heteropolyanion is composed of two monovacant [α-PW11O39]7? Keggin moieties linked via a Gd atom leading to a sandwich-type structure. The Gd center is in a distorted square antiprismatic coordination environment with eight oxygen atoms, four from each of the two [α-PW11O39]7?moieties.  相似文献   

4.
The three‐dimensional structures in aqueous solution of the entire series of the Ln3+ complexes [Ln(DOTP*‐Et)]? (formed from the free ligand P,P′,P″,P′′′‐[1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrayltetrakis(methylene)]tetrakis[P‐ethylphosphinic acid] (H4DOTP*‐Et) were studied by NMR techniques to rationalize the parameters governing the relaxivity of the Gd3+ complex and evaluate its potential as MRI contrast agent. From the 1H‐ and 31P‐NMR lanthanide‐induced‐shift (LIS) values, especially of the [Yb(DOTP*‐Et)]? complex, it was concluded that the [Ln(DOTP*‐Et)]? complexes adopt in solution twisted square antiprismatic coordination geometries which change gradually their coordination‐cage structure along the lanthanide series. These complexes have no inner‐sphere‐H2O coordination, and preferentially have the (R,R,R,R) configuration of the P‐atoms in the pendant arms. Self‐association was observed in aqueous solution for the tetraazatetrakisphosphonic acid ester complexes [Ln(DOTP*‐OEt)]? (=[Ln(DOTP‐Et)]?) and [Ln(DOTP*‐OBu)]? (=[Ln(DOTP‐Bu)]?) at and above 5 mM concentration, through analysis of 31P‐NMR, EPR, vapor‐pressure‐osmometry, and luminescence‐spectroscopic data. The presence of the cationic detergent cetylpyridinium chloride (CPC; but not of neutral surfactants) shifts the isomer equilibrium of [Eu(DOTP*‐OBu)]? to the (S,S,S,S) form which selectively binds to the cationic micelle surface.  相似文献   

5.
A highly rigid open‐chain octadentate ligand (H4cddadpa) containing a diaminocylohexane unit to replace the ethylenediamine bridge of 6,6′‐[(ethane‐1,2 diylbis{(carboxymethyl)azanediyl})bis(methylene)]dipicolinic acid (H4octapa) was synthesized. This structural modification improves the thermodynamic stability of the Gd3+ complex slightly (log KGdL=20.68 vs. 20.23 for [Gd(octapa)]?) while other MRI‐relevant parameters remain unaffected (one coordinated water molecule; relaxivity r1=5.73 mm ?1 s?1 at 20 MHz and 295 K). Kinetic inertness is improved by the rigidifying effect of the diaminocylohexane unit in the ligand skeleton (half‐life of dissociation for physiological conditions is 6 orders of magnitude higher for [Gd(cddadpa)]? (t1/2=1.49×105 h) than for [Gd(octapa)]?. The kinetic inertness of this novel chelate is superior by 2–3 orders of magnitude compared to non‐macrocyclic MRI contrast agents approved for clinical use.  相似文献   

6.
We report the synthesis of a cyclen‐based ligand (4,10‐bis[(1‐oxidopyridin‐2‐yl)methyl]‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid= L1 ) containing two acetate and two 2‐methylpyridine N‐oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the GdIII complex may be sufficient for biological applications. A detailed structural study of the complexes by 1H NMR spectroscopy and DFT calculations indicates that they adopt an anti‐Δ(λλλλ) conformation in aqueous solution, that is, an anti‐square antiprismatic (anti‐SAP) isomeric form, as demonstrated by analysis of the 1H NMR paramagnetic shifts induced by YbIII. The water‐exchange rate of the GdIII complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$ =6.7×106 s?1, about a quarter of that for the mono‐oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The 2‐methylpyridine N‐oxide chromophores can be used to sensitize a wide range of LnIII ions emitting in both the visible (EuIII and TbIII) and NIR (PrIII, NdIII, HoIII, YbIII) spectral regions. The emission quantum yield determined for the YbIII complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$ =7.3(1)×10?3) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.  相似文献   

7.
A review of coordination compounds of several metals (Co2+, Ru2+, Zn2+, Al3+, Y3+, Ln3+ = La, Gd, Yb, Lu) with tetra-crown-substituted phthalocyanine H2R4Pc (R4Pc2? = [4,5,4′,5′,4′′,5′′,4′′′,5′′′-tetrakis(1,4,7,10,13-pentaoxotridecamethylen)phthalocyaninate-ion]) has been presented. The syntheses of compounds with a given tetra-azamacrocyclic ligand are described. The template method based on the crown-substituted phthalodinitrile is the optimum technique for preparation of Ru2+ monophthalocyaninate and sandwich complexes of Lu3+. For other rare earth metals the new synthetic approach based on the application of the H2R4Pc ligand has been suggested. Some aspects of supramolecular chemistry including cation-induced aggregation in solutions have been discussed for the compounds of this class.  相似文献   

8.
Pyridine-1-oxide complexes of lanthanide iodides of the formulaLn(PyO)8I3 whereLn=La, Pr, Nd, Tb, Dy, Er, and Yb have been prepared and characterised by analyses, molecular weight, conductance, infrared and proton NMR data. Proton NMR and IR data have shown the coordination of the ligand to the metal through the oxygen atom of the N?O group. NMR data have been interpreted in terms of a distorted square antiprismatic geometry in solution.  相似文献   

9.
After vacuum dehydration, a number of hydrated trivalent lanthanoid trifluoromethanesulfonates (“triflate”, “OTf” = F3CSO3), when recrystallized from various alcohol (ROH) solutions, yield solvates Ln(OTf)3 · xROH, x = 3, 5 or 6. The following have been defined crystallographically (R/Ln/x): Me/La/3;Me/Gd/6; Et/Sm/3; Et/Gd/5 iPr/Nd,Sm/3. The Me/Gd/6complex, Gd(OTf)3 · 6MeOH is a mononuclear/ionic form [(MeOH)6Gd(O–OTf)2](OTf), the gadolinium environment being octacoordinate, square‐antiprismatic with the O–OTf donors quasi‐trans on different faces of the coordination polyhedron; the Et/Gd/5 complex is neutral, molecular, mononuclear [(EtOH)5Gd(O–OTf)3], also with an octacoordinate, square‐antiprismatic coordination sphere, derivative of that of the methanol solvate. The remainder form one‐dimensional polymeric arrays, successive lanthanoid atoms linked by (μ‐O–OTf–O′)3 triads, at either end of a tricapped trigonal prismatic array, the ROH molecules contributing the capping atoms. A (“baseline”) (re‐)determination of the “parent” Sm(OTf)3 · 9H2O is also recorded.  相似文献   

10.
The title complexes, K[SmIII(Edta)(H2O)3] · 2H2O(I)(H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and K2[SmIII(Pdta)(H2O)2]2 · 4.5H2O (II) (H4Pdta = propylenediamine-N,N,N′,N′-tetraacetic acid), were prepared and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques, respectively. Complex I has a mononuclear structure, and the Sm3+ ion is nine-coordinated by an Edta ligand and three water molecules, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the orthorhombic crystal system with space group Fdd2. The crystal data are as follows: a = 19.84(5), b = 35.58(9), c = 12.15(3) ?, V = 8580(38) ?3, Z = 16, ρ c = 1.925 g/cm3, μ = 3.010 mm−1, F(000) = 4976, R = 0.0252, and wR = 0.0560 for 3510 observed reflections with I ≥ 2σ(I). Complex II has a binuclear structure and the Sm3+ ion is ten-coordinated by a Pdta ligand, two oxygen atoms from a carboxylic group of adjacent Pdta ligand and two water molecules, yielding a distorted bicapped square antiprismatic prism. The complex crystallizes in the triclinic crystal system with space group P $ \bar 1 $ \bar 1 . The crystal data are as follows: a = 8.9523(15), b = 10.7106(15), c = 11.6900(19) ?, α = 80.613(5)°, β = 80.397(5)°, γ = 76.530(4)°, V = 1065.7(3) ?3, Z = 1, ρc = 1.970 g/cm3, μ = 2.532 mm−1, F(000) = 1620, R = 0.0332 and wR = 0.0924 for 5390 observed reflections with I ≥ 2σ(I).  相似文献   

11.
0引言手性环氧化物是合成许多天然产物、光学活性材料、光学活性药物等的重要中间体[1]。上世纪60年代以来,手性过渡金属配合物作为烯烃不对称环氧化的催化剂越来越受到人们的重视[2]。研究表明,某些席夫碱金属配合物具有仿酶催化活性,在仿酶催化剂的合成及应用方面占有重要地位[3]。目前,人们将水杨醛衍生物与光学活性胺的席夫碱金属配合物用于不对称环氧化、不对称环丙烷化等反应,具有很高的对映体选择性[4]。同时发现配体的电子效应直接影响配合物的催化活性和对映体选择性。为进一步研究配体的电子性能对配合物催化性能的影响,我们设计…  相似文献   

12.
Two new highly oxidized humulane sesquiterpenes, mitissimols F ( 1 ) and G ( 2 ), were isolated from the fruiting bodies of Lactarius mitissimus. Their structures were elucidated by using extensive spectroscopic techniques including 1D‐ and 2D‐NMR experiments. The absolute configuration of mitissimol F ( 1 ) was determined by 1H‐NMR resolution of its diastereoisomeric α‐methoxy‐α‐(trifluoromethyl)benzeneacetates (MTPA). It was shown to be (1S,3E,6S,8R,9R,10S,11R)‐8,9 : 10,11‐diepoxy‐1,6‐dihydroxyhumul‐3‐en‐5‐one (=(1S,2R,4R,6S,8E,11S,12R)‐6,11‐dihydroxy‐1,6,10,10‐tetramethyl‐3,13‐dioxatricyclo[10.1.0.02,4]tridec‐8‐en‐7‐one).  相似文献   

13.
Three new withanolide compounds named baimantuoluoline A ( 1 ), B ( 2 ), and C ( 3 ) and the two known withanolides withafastuosin E ( 4 ) and withametelin C ( 5 ) were isolated from the fraction exhibiting activity for psoriasis in the flower of Datura metel L. The three new structures were determined as (5α,6α,7α,12β,15β,22R)‐6,7‐epoxy‐5,12,15‐trihydroxy‐1‐oxowitha‐2,24‐dienolide ( 1 ), (5α,6β,15β,22R)‐ 5,6,15,21‐tetrahydroxy‐1‐oxowith‐24‐enolide ( 2 ), and (5α,6β,12β,22R)‐5,6,12,21‐tetrahydroxy‐27‐methoxy‐1‐oxowitha‐2,24‐dienolide ( 3 ) on the basis of extensive spectroscopic data (HR‐ESI‐MS, 1H‐ and 13C‐NMR, 1H,1H‐COSY, HSQC, HMBC, and NOESY) (withanolide=22‐hydroxyergostan‐26‐oic acid δ‐lactone).  相似文献   

14.
A new sterol, 5α,6α‐epoxy‐3β‐hydroxy‐(22E,24R)‐ergosta‐8,22‐dien‐7‐one ( 1 ), together with eight known sterols, 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8,22‐diene‐3β,7α‐diol ( 2 ), 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8,22‐diene‐3β,7β‐diol ( 3 ), 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8(14),22‐diene‐3β,7α‐diol ( 4 ), 3β‐hydroxy‐(22E,24R)‐ergosta‐5,8,22‐trien‐7‐one ( 5 ), ergosterol peroxide ( 6 ), clerosterol ( 7 ), decortinol ( 8 ), and decortinone ( 9 ), were isolated from the stems of Momordica charantia. Their structures were elucidated by mean of extensive spectroscopic methods, including 1H, 13C, 2D‐NMR and HR‐EI‐MS, as well as comparison with the literature data. Compounds 1 , 4 , 5 , 8 , and 91 were not cytotoxic against the SK‐Hep 1 cell line.  相似文献   

15.
[Yb(OAr)2(μ‐OMe)(DME)]2 ( 1 ) (OAr = 2,6‐di‐iso‐propylphenolate) was synthesised via a redox transmetallation ligand exchange reaction between ytterbium metal, diphenylmercury and 2,6‐di‐isopropylphenol in DME. The source of the methoxy groups is from cleavage of DME, and the C‐O bond activation is unexpected given that the reaction was undertaken at ambient temperature. Each Yb3+ metal ion in 1 is six coordinate, and the coordination arrangement around each metal ion is distorted trigonal antiprismatic with Yb‐O(OMe) bond lengths (2.191(2) and 2.258(2) Å) shorter than the Yb‐O(aryloxide) bond distances (2.094(2) and 2.074(2) Å).  相似文献   

16.
Synthesized powders and grown single crystals of nominal compositions Li6Ln(BO3)3:Yb3+ (Ln=Y, Gd) were investigated by means of powder and single‐crystal X‐ray diffraction (XRD), as well as optical near‐IR spectroscopy in conjunction with electron paramagnetic resonance (EPR) spectroscopy. The appearance of two distinct zero‐phonon lines suggests the existence of two kinds of Yb3+ ions in the single crystals. The XRD results exclude the possibility of a phase transition occurring between room and low temperatures. EPR spectra of single crystals show the presence of both isolated ions and pairs of ytterbium ions substituted for Y3+. A strong temperature dependence of the intensity of Yb–Yb pairs resonance lines coincides with temperature dependence of emission peak at 978 nm, confirming a common origin of the defect giving rise to these spectra. Calculated from EPR spectra, the distance between pairs of Yb3+ is in good agreement with crystallographic ones: R=3.856 Å, Rcryst=3.849 Å.  相似文献   

17.
Syntheses and structure determination of the YIII complexes with ethylenediaminetetraacetic acid (H4edta) and trans-1,2-cyclohexanediaminetetraacetic acid (H4cydta) are reported. The crystal and molecular structures of the complexes, as well as their molecular formulas and compositions, were determined by single-crystal X-ray structure analyses, NMR, IR, thermogravimetric measurements, and elementary analyses. The crystal of the Na[YIII(edta)(H2O)3]·5H2O complex belongs to the orthorhombic crystal system and space group Fdd2. The crystal data are as follows: a = 19.355(5) Å, b = 35.431(11) Å, c = 12.122(3) Å, V = 8313(4) Å3, Z = 16, M = 544.23, Dc = 1.739 g·cm−3, μ = 2.908 mm−1 and F(000) = 4480. The final R and Rw are 0.0483 and 0.1172 for 3284 (I > 2σ(I)) unique reflections, R and Rw are 0.0678 and 0.1440 for all 8499 reflections, respectively. The YIIIN2O7 part in the [YIII(edta)(H2O)3] complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure, in which the six coordinated atoms (two N and four O) from the edta ligand and three water molecules are coordinated to the central YIII ion directly. The crystal of the Na[YIII(cydta)(H2O)2]·5H2O complex belongs to the triclinic crystal system and space group. The crystal data are as follows: a = 8.405(2) Å, b = 9.970(2) Å, c = 14.763(4) Å, α = 88.538(4)°, β = 76.193(4)°, γ = 88.100(4)°, V = 1200.6(5) Å 3, Z = 2, M = 580.31, Dc = 1.605 g·cm−3, μ = 2.519 mm−1 and F(000) = 600. The final R and Rw are 0.0381 and 0.0911 for 4198 (I > 2σ(I)) unique reflections, R and Rw are 0.0530 and 0.1041 for all 6186 reflections, respectively. The YIIIN2O6 part in the [YIII(cydta)(H2O)2] complex anion has a pseudo square antiprismatic eight-coordinate structure in which the six coordinated atoms (two N and four O) from the cydta ligand and two water molecules are coordinated to the central YIII ion directly. Original Russian Text Copyright ? 2005 by J. Wang, Y. Wang, Zh. H. Zhang, X. D. Zhang, J. Tong, X. Zh. Liu, X. Y. Liu, Y. Zhang, and Zh. J. Pan __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 928–938, September–October, 2005.  相似文献   

18.
A publication by Alexander P. Smirnoff in Helvetica Chimica Acta in 1920 [6] describes the first synthesis of a coordination species, i.e., of tris(propane‐1,2‐diamine‐κN1,κN2)platinum(4+) ([PtIV(pn)3]4+), where it was shown that the configuration of a chiral center in the ligand can influence the configuration at the metal. The present investigation of [PtIV(pn)3]4+ was carried out by NMR spectroscopy, where all nuclei in the metal complex were used as sources of information, i.e., 1H, 13C, 15N, and 195Pt. 13C‐NMR and 15N‐NMR spectroscopy (of isotopically enriched complex) were especially informative for the analysis of isomer distribution. Stereoselectivity in the formation reaction of the complexes is rather modest, whereas Δ‐, and Λ‐isomers can be separated efficiently by crystallization. A mixture of [Pt{(S)‐pn}3]4+ and [Pt{(R)‐pn}3]4+ shows no scrambling of the enantiomeric ligands, thus proving the inertness of the complexes.  相似文献   

19.
In the first phytochemical study of the Aureliana genus (Solanaceae), two new withanolides, 1 and 2 , together with two known sterols, were isolated from the MeOH extract of the leaves of Aureliana fasciculata var. fasciculata. The structures were established as (4S,22R)‐16α‐acetoxy‐5β,6β‐epoxy‐4β,17α‐dihydroxy‐1‐oxowitha‐2,24‐dienolide (aurelianolide A) and (4S,22R)‐16α‐acetoxy‐4β,17α‐dihydroxy‐1‐oxowitha‐2,5,24‐trienolide (aurelianolide B). The new compounds possessed the unusual 16α,17α‐dioxygenated group and were fully characterized by spectroscopic techniques, including 1H‐ and 13C‐NMR (DEPT), as well as 2D‐NMR (HMBC, HMQC, 1H,1H‐COSY, NOESY) experiments, and HR‐MS.  相似文献   

20.
The title complexes, K2[EuIII(dtpa)(H2O)]·5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), Na2[TbIII(Httha)]·6H2O (H6ttha = triethylenetetramine-N,N,N′,N′,N″,N″-hexaacetic acid), were prepared, and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. The crystal of K2[EuIII(dtpa)(H2O)]·5H2O belongs to triclinic crystal system and $ P\bar 1 $ P\bar 1 space group. The crystal data are as follows: a = 8.3540(17), b = 10.147(2), c = 15.059(3) α = 84.63(3)?, β = 82.02(3)°, γ = 83.96(3)°, V = 1253.1(4)?3, Z = 2, R = 0.0325 and wR = 0.1013 for 4407 observed reflections with I ≥ 2σ(I). The [EuIII(dtpa)(H2O)]2− has a nine-coordinate pseudo-monocapped square antiprismatic structure, in which the nine coordinate atoms, three N and six O are from one dtpa ligand and one water molecule. The crystal of the Na2[TbIII(Httha)]·6H2O belongs to monoclinic system and P21/c space group. The crystal data are as follows: a = 10.3976(10), b = 12.7908(13), c = 23.199(2) ? = 90.914(2)°, V = 3084.9(5)?3, Z = 4, R = 0.0309 and wR = 0.0704 for 5429 observed reflections with I ≥ 2σ(I). In the [TbIII(Httha)]2−, the Tb3+ ion is nine-coordinated yielding a pseudo-monocapped square antiprismatic conformation, in which the ttha ligand coordinates to the central Tb3+ ion with four N atoms and five O atoms. There is a free non-coordinate carboxyl group (−CH2COOH) that can be modified by some biological molecules having target function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号