首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
在无乳化剂的条件下合成了粒径均匀的聚苯乙烯胶乳.发展了应用表面张力计测定吸附等温线的连续平衡法,得到不同盐浓度和温度下聚苯乙烯胶乳对十二烷基硫酸钠和十二烷基苯磺酸钠的吸附等温线.它们属于Giles分类的L_2型或L_4型,采用两阶段吸附模式讨论了吸附机理、吸附层结构及等温线类型变化的规律。  相似文献   

2.
实验测定了溴代烷基三甲胺的吸附对单分散聚苯乙烯胶乳电泳速度的影响.在Stern双电层模型的基础上,从电泳数据求得了吸附等温线,改进了计算吸附位数与吸附自由能的方法,并讨论了可能的吸附机构.  相似文献   

3.
碳氟链与碳氢链表面活性剂在固液界面上的吸附   总被引:1,自引:0,他引:1  
全氟辛酸及其钠盐和十二烷基硫酸钠在R972上的吸附等温线均为S型或LS型,指示固液界面吸附过程中有表面疏水缔合物生成.碳氟表面活性剂的饱和吸附量显著高于碳氢表面活性剂的饱和吸附量.加电解质于液相使各体系吸附量上升.对于碳氟表面活性剂,甚至引起吸附等温线类型变化.例如,不加电解质时全氟辛酸在R972上的吸附等温线为S型,而加入HCl(c=0.05mol·dm-3)使吸附等混线变成LS型.全氟辛酸比全氟辛酸钠在R972上的吸附更强.几种表面活性剂在R972上的吸附均随温度升高而减少。应用两阶段吸附模型及通用吸附等温线公式可以很好地解释所得实验结果.  相似文献   

4.
高强  徐耀  吴东  孙予罕 《化学进展》2007,19(6):1016-1025
介绍了氨基酸在固体表面吸附的常见吸附模式和吸附等温线类型。在常见的等温式中Sips等温式能处理液相中吸附质浓度从低到高、吸附剂表面从均匀到不均匀等各种情形下的固/液吸附体系,得到的等温线一般归属4类:S型、L型、H型和C型;总结和讨论了各吸附参数对氨基酸吸附的影响,具体考察了氨基酸种类、固体表面的性质、溶剂种类、介质的pH、介质离子强度和温度等因素对氨基酸吸附的影响,指出通过优化各吸附参数,可以调整氨基酸和固体吸附剂之间的静电吸引力或疏水作用,达到最好的吸附效果;对氨基酸的固体吸附剂进行了分类阐述。  相似文献   

5.
表面活性剂在固液界面上的吸附理论   总被引:16,自引:0,他引:16  
本文根据二阶段吸附模型和质量作用定律,首次导出表面活性剂在固液界面上吸附等温线通用公式,可定量解释实验测得的各种吸附等温线,并可求得表面胶团(或反胶团)的聚集数和二吸附阶段的平衡常数。吸附热力学计算表明,表面胶团亦为疏水作用的熵驱动过程,反胶团化则为极性基间相互作用或形成氢键的结果。  相似文献   

6.
《物理化学学报》1992,8(2):153-155
根据两阶段吸附模型~[1], 导出了两常数及一常数吸附等温线公式。不仅可以方便地应用于各种类型的表面活性剂在固/液界面上的吸附数据, 而且具有预示能力。对于显示LS型等温线的体系只需测定第一平台处和饱和的吸附量即可给出整个的吸附等温线。对于离子型表面活性剂在反电性固体上的吸附, 可自一个化合物的吸附预示出一系列同系物在同一吸附剂上的吸附等温线。  相似文献   

7.
根据电泳与电导的测量得出,聚苯乙烯胶乳质点的ξ电势随电解质浓度增加而变大,主要是质点表面基团与溶液间离子交换的结果。根据Langmuir吸附公式与Stern双电层模型,由电泳数据求出了表面活性阳离子在聚苯乙烯胶乳上的吸附自由能与吸附位数。增大电解质浓度使质点表面吸附位数增加,表面活性阳离子的吸附量也因此变大。  相似文献   

8.
由氯甲基化低交联聚苯乙烯和异氰尿酸在三乙胺作用下反应,制得了凝胶型交联聚苯乙烯-异氰尿酸树脂,测定了该树脂对苯酚和间苯二酚在不同温度下的吸附等温线,依据Clapeyron0Clausius方程从吸附等温线计算出了吸附热,从热力学的角度论证了树脂是基于氢键键合的疏水作用而吸附苯酚和间苯二酚的。  相似文献   

9.
本文研究了盐存在时不同比例的十二烷基硫酸钠(简称12CH)和溴化正辛基三甲基铵(简称C8NBr)混合物的表面活性、表面吸附以及胶团形成等性质,结果表明:(1)正、负离子表面活性剂混合物具有很高的表面活性,不论其混合比例如何,临界胶团浓度(cmc)及cmc时溶液的表面张力(γcmc)皆较任何单一组分时小;(2)不论体相中比例如何,表面层中12CH和C8NBr的饱和吸附量的摩尔比皆~1.7且总饱和吸附量亦皆~5.2x10[-10]mol.cm[-2].由此求得表面层中分子截面积为32A[2],与由分子结构计算的数据相近,说明正、负表面活性离子排列紧密;(3)与碳链长相同的正、负离子型表面活性剂混合水溶液比较,本体系反应离子浓度对cmc有明显影响,证实表面层带电,胶团也带电;(4)计算了离子强度相同,温度不同时和温度相同、离子强度不同时的热力学量,得出离子强度大者易形成胶团。  相似文献   

10.
测定了癸基和辛基-甲亚基亚砜在硅胶/水溶液界面的吸附以及溶液在石英界面的接触角. 研究了温度和pH值对吸附的影响. 吸附等温线似应归入Giles分类的L4型. 饱和吸附层的平均分子面积为27-30A^2. 二个同系物的γ/γ-c/cmc曲线彼此重叠. 吸附温度系数在低浓度范围是负性的在高浓度范围是正性的. 接触角的测量表面吸附使硅胶表面疏水. 从实验结果考虑到吸附过程由二个阶段组成: 一是在低浓度范围由固体表面和亚砜基之间的相互作用, 另一过程是在高浓度范围中, 被吸附的表面活性剂分子及其在溶液中的疏水作用.  相似文献   

11.
The adsorption isotherms of sodium perfluorooctanoate and sodium decyl sulfate and their 1:1 mixture on gamma-alumina are recorded by depletion-type experiments with (1)H and (19)F NMR spectroscopy as the detection tool. The isotherms of the different surfactant species, obtained with and without added salt, closely resemble each other. Salt addition changes the isotherms from stepwise to the familiar S-shaped. After having reached saturation, a further increase of surfactant concentration in the mixed system leads to decyl sulfate desorption and increased perfluorooctanoate adsorption. The (19)F chemical shift of adsorbed perfluorooctanoate suggests that, for saturated surfaces, the two sorts of adsorbed surfactants form molecularly mixed surface aggregates.  相似文献   

12.
In the case of cationic polystyrene latex, the adsorption of anionic surfactants involves a strong electrostatic interaction between both the particle and the surfactant, which may affect the conformation of the surfactant molecules adsorbed onto the latex-particle surface. The adsorption isotherms showed that adsorption takes place according to two different mechanisms. First, the initial adsorption of the anionic surfactant molecules on cationic polystyrene surface would be due to the attractive electrostatic interaction between both ionic groups, laying the alkyl-chains of surfactant molecules flat on the surface as a consequence of the hydrophobic interaction between these chains and the polystyrene particle surface, which is predominantly hydrophobic. Second, at higher surface coverage the adsorbed surfactant molecules may move into a partly vertical orientation with some head groups facing the solution. According to this second mechanism the hydrophobic interactions of hydrocarbon chains play an important role in the adsorption of surfactant molecules at high surface coverage. This would account for the very high negative mobilities obtained at surfactant concentration higher than 5×10–7 M. Under high surface-coverage conditions, some electrophoretic mobility measurements were performed at different ionic strength. The appearance of a maximum in the mobility-ionic strength curves seems to depend upon alkyl-chain length. Also the effects of temperature and pH on mobilities of anionic surfactant-cationic latex particles have been studied. The mobility of the particles covered by alkyl-sulphonate surfactants varied with the pH in a similar manner as it does with negatively charged sulphated latex particles, which indicates that the surfactant now controls the surface charge and the hydrophobic-hydrophilic character of the surface.Dedicated to the memory of Dr. Safwan Al-Khouri IbrahimPresented at the Euchem Workshop on Adsorption of Surfactants and Macromolecules from Solution, Åbo (Turku), Finland, June 1989  相似文献   

13.
朱瑶  王薇 《化学学报》1988,46(5):413-418
研究了全氟辛酸钠与溴化十四烷基三甲铵混合水溶液的表面活性. 测定了不同比例混合物水溶液的表面张力-浓度曲线, 得出临界胶团浓度(cmc)及监 界胶团浓度时的溶液表面张力(γcmc)值. 应用Gibbs吸附公式及吸附层中两表面活性剂分子相互作用参数法求出表面总吸附量、吸附层组成及两表面活性剂分别吸附量等. 指示此吸附层具有多分子层性质. 这可能是碳氢、碳氟正负离子混合体系的特点.  相似文献   

14.
The adsorption isotherms for an (amino) terminally functionalised, oligomeric polyisobutylene and for a series of alkylpropoxylate or alkylbutoxylate surfactant molecules on carbon particles, in isooctane, have been obtained. The isotherms on carbon show that the oligomer is the most strongly adsorbing species. The surfactants show some evidence of forming aggregates on the carbon surface at higher concentrations. Analysis of the adsorption isotherms indicate that the size of these aggregates is similar on the carbon particles and on steel balls, reported previously, but that in some cases the actual adsorbed amounts on the two surfaces differ considerably. Ellipsometric studies carried out in situ on steel surfaces in isooctane show that only the polymer gives a relatively thick adsorbed layer. Addition of surfactant reduces the adsorption of the oligomer. There are some differences between the thickness values reported previously using AFM, compared to those found in the current work using ellipsometry, but in both cases it would seem that some degree of multilayer adsorption is occurring for the oligomer on steel in isooctane.  相似文献   

15.
In this work, the binding between sodium oleate (SO), sodium laurate (SL), sodium dodecyl sulfate (SDS), and sodium dodecylphosphonate (SDP) and iron oxide nanoparticles was systematically investigated using isothermal titration calorimetry (ITC). Comparing the heat exchanged during the isothermal titration with the corresponding surfactant adsorption isotherm, in the cases of SO and SDP, a strong binding takes place at low surfactant concentrations. The binding enthalpy at this low surfactant concentrations depends on the type of surfactant anionic head group. For C12 surfactants, the phosphonate group produced the strongest endothermic binding, followed by the exothermic binding with the carboxylate group, followed by weak exothermic interaction with the sulfate group. For carboxylate surfactants, longer surfactant tails result in larger exothermic binding. Surfactants that exhibited large binding enthalpies also produced more stable suspensions. The Langmuir (L), Freundlich (F), and Langmuir–Freundlich (L–F) adsorption models were used to interpret the adsorption isotherms during the titration with sodium oleate. The L–F adsorption isotherm model was selected to calculate the heat of the formation of the SO monolayer and bilayer on the iron oxide nanoparticles. The L–F model reflects the finite or limited adsorption of the Langmuir model, but accounts for non-homogeneous adsorption of the Freundlich model that help account for surfactant self-assembly before and after adsorption. Coupling the adsorption model with the titration data is possible to calculate the real heat of adsorption of the surfactants on the metal oxide.  相似文献   

16.
This work is focused on analyzing the electrokinetic behavior and colloidal stability of latex dispersions having different amounts of adsorbed ionic surfactants. The effects of the surface charge sign and value, and the type of ionic surfactant were examined. The analysis of the electrophoretic mobility (mu(e)) versus the electrolyte concentration up to really high amounts of salt, much higher than in usual studies, supports the colloidal stability results. In addition, useful information to understand the adsorption isotherms was obtained by studying mu(e) versus the amount of the adsorbed surfactant. Aggregation studies were carried out using a low-angle light scattering technique. The critical coagulation concentrations (ccc) of the particles were obtained for different surfactant coverage. For latex particles covered by ionic surfactants, the electrostatic repulsion was, in general, the main contribution to the colloidal stability of the system; however, steric effects played an important role in some cases. For latices with not very high colloidal stability, the adsorption of ionic surfactants always improved the colloidal stability of the dispersion above certain coverage, independently of the sign of both, latex and surfactant charge. This was in agreement with higher mobility values. Several theoretical models have been applied to the electrophoretic mobility data in order to obtain different interfacial properties of the complexes (i.e., zeta potential and density charge of the surface charged layer).  相似文献   

17.
Reported are adsorption isotherms for guar and hydroxypropyl guar (HPG), with and without the presence of borate ions, onto surfactant free anionic polystyrene latex. Guar and HPG formed adsorbed monolayers on the hydrophobic latex. The presence of borate ions converted the nonionic guar and HPG into an anionic polyelectrolyte. However, there was no measurable influence of bound borate ions on the adsorption of guar or HPG onto anionic, hydrophobic latex. To underscore the unusual behavior of HPG-borate, a sample of HPG was oxidized to introduce carboxyl groups, and the adsorption of the carboxylated HPG onto anionic polystyrene was measured. Unlike HPG-borate, oxidized HPG did not adsorb onto negative polystyrene latex at neutral pH because of electrostatic repulsion. To explain the adsorption of negative HPG-borate onto negative latex, we proposed that as HPG-borate segments approach the latex surface, the negative electrostatic potential near the latex surface induces the detachment of the labile borate groups from HPG.  相似文献   

18.
In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.  相似文献   

19.
用精密自动绝热量热计测定了在220-320K范围内, 不同含水量的H2O/NaY吸附体系的热容. 结果表明, 在这些吸附体系的Cp-T曲线上均没有水的固-液相变峰. 这说明即使在饱和吸附的情况下, 水分子仍以单分子层的形态存在于NaY表面上, 它们没有形成聚集态. 此外, 还测定了往饱和吸附的H2O/NaY中再加入不同量水后所组成的H2O/NaY体系的热容. 在这些Cp-T曲线上都出现了明显的相变峰. 所加之水一旦脱出, 则相变峰又消失. 这些水存在于分子筛颗粒之间只与外表面接触. 但仍受分子筛表面的影响. 所以它们的熔化热、熔化温度均比正常水的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号