首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The stabilization of emulsions by a mixture of oppositely charged nanoparticles is investigated in relation to their behavior in water before emulsification. No emulsion can be prepared using either negatively or positively charged silica particles alone because the particles are too hydrophilic. Certain mixtures of the two particle types lead to heteroaggregation and a lowering of the net charge. Such mixtures, of increased hydrophobicity as verified by contact angle measurements, are capable of forming stable oil-in-water emulsions of excellent coalescence stability. The increased viscosity of the continuous phase also contributes to such stability.  相似文献   

2.
A unique triblock surfactant is reported that allows for the efficient microemulsification of triglycerides. Unlike the results of all previous efforts, these triglyceride microemulsions can be formed without the use of cosurfactants or dilution with co-oils and follow the classical patterns of surfactant phase behavior exhibited by mixtures of water, alkane oils, and nonionic oligoethylene glycol surfactants, i.e., progression from oil/water emulsions to one-phase microemulsions to water/oil emulsions with increasing temperature. Lamellar phases that usually dominate the aqueous phase behavior of surfactant/triglyceride mixtures are suppressed, allowing for the formation of single-phase microemulsions containing equal amounts of triglyceride and water. These isotropic and low-viscous fluids are particularly useful for cleansing and delivery of functional ingredients in skin care products. The effects of mixing a variety of typical skin care ingredients and components of sebum (skin oil) were also explored. Fatty acids significantly reduce the average microemulsion temperature, while other ingredients and oils, which do not partition at the oil/water interface, have less impact on the phase behavior. In all cases, one-phase microemulsions containing equal amounts of oil and water can be formed even at high additive concentrations. Indeed, partial replacement oftriglyceride with any of the additives examined consistently reduced the amount of surfactant necessary to form single-phase microemulsions. However, the greatest boost in surfactant efficiency was found with the addition of medium molecular weight amphiphilic block copolymers.  相似文献   

3.
We have investigated the formation, drop sizes, and stability of emulsions prepared by hand shaking in a closed vessel in which the emulsion is in contact with a single type of surface during its formation. The emulsions undergo catastrophic phase inversion from oil-in-water (o/w) to water-in-oil (w/o) as the oil volume fraction is increased. We find that the oil volume fraction required for catastrophic inversion exhibits a linear correlation with the oil-water-solid surface contact angle. W/o high internal phase emulsions (HIPEs) prepared in this way contain water drops of diameters in the range 10-100 μm; emulsion drop size depends on the surfactant concentration and method of preparation. W/o HIPEs with large water drops show water separation but w/o HIPEs with small water drops are stable with respect to water separation for more than 100 days. The destabilization of the w/o HIPEs can be triggered by either evaporation of the oil continuous phase or by contact the emulsion with a solid surface of the "wrong" wettability.  相似文献   

4.
贺拥军  齐随涛  赵世永 《化学进展》2007,19(9):1443-1448
本文在介绍常规乳状液、微乳液和固体稳定乳液的基础上,着重综述了纳米粒子稳定乳液的特点及其在纳米结构合成中的应用进展,并对目前该研究领域亟待解决的问题进行了分析。纳米粒子稳定乳液具有独特的油、水、固三相环境和水油、水固、油固三个相界面,分散相液滴尺寸可以在微米、亚微米乃至纳米尺度调节,因而可以作为合成组成、结构和性能极为丰富多样的纳米结构的介质。纳米粒子对乳液稳定作用的机理,以及纳米粒子稳定乳液中化学反应的特殊规律还有待深入研究。本文在介绍固体稳定乳液的基础上,着重综述了纳米粒子稳定乳液的特点及其在纳米结构合成中的应用进展,并对目前该研究领域亟待解决的问题进行了分析。纳米粒子稳定乳液具有独特的油、水、固三相环境和水油、水固、油固三个相界面,分散相液滴尺寸可以在微米、亚微米乃至纳米尺度调节,因而可以作为合成组成、结构和性能极为丰富多样的纳米结构的介质。纳米粒子对乳液稳定作用的机理,以及纳米粒子稳定乳液中化学反应的特殊规律还有待深入研究。  相似文献   

5.
Recently, there has been an increasing interest in the breakage of water-in-oil (W/O) emulsions by the freeze/thaw method. Most of the previous works focused on the phase transition of the water droplet phase. This paper emphasizes the effect of continuous oil phase transition. A series of oils with different freezing points were used as oil phases to produce model emulsions, which were then frozen and thawed. The emulsion whose oil phase froze before the water droplet phase did (OFBW) on cooling was readily demulsified with a dewatering ratio as high as over 80%, but the emulsion whose oil phase did not freeze when the water droplet phase did (NOFBW) was relatively hard to break. The difference in demulsification performance between them resulted from the distinction between their demulsification mechanisms via the analyses of the emulsion stability, emulsion crystallization/melting behaviors, oil phase physical properties, and wettability of the frozen oil phase, etc. For the OFBW emulsion, the first-frozen oil phase was ruptured by the volume expansion of the subsequently frozen droplet phase, and meanwhile, some liquid droplet phase was drawn into the fine gaps/crevices of the frozen oil phase to bridge droplets, which were considered to be essential to the emulsion breakage, whereas for the NOFBW emulsion, the demulsification was attributed to the collision mechanism proposed in our previous work. The findings may provide some criteria for selecting a proper oil phase in the emulsion liquid membrane (ELM) process and then offer an alternative approach to recycle the oil phase for continuous operation. This work may also be useful for emulsion stability against temperature cycling.  相似文献   

6.
High‐internal‐phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe high‐internal‐phase Pickering emulsions with 87 % edible oil or 88 % n‐hexane in water stabilized by peanut‐protein‐isolate microgel particles. These dispersed phase fractions are the highest in all known food‐grade Pickering emulsions. The protein‐based microgel particles are in different aggregate states depending on the pH value. The emulsions can be utilized for multiple potential applications simply by changing the internal‐phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n‐hexane, the emulsion can be used as a template to produce porous materials, which are advantageous for tissue engineering.  相似文献   

7.
Emulsions of water in mineral oils are stable if the oil phase contains asphaltenes which are near the condition of incipient flocculation. This condition is determined by the composition of the oil phase and by the nature of the asphaltenes. High aromaticity of the oil phase and the presence of deflocculants prevent flocculation of asphaltenes; the deflocculants may be interfacially active agents or asphaltene-like compounds with better solubility in the oil phase. Conditions of incipient flocculation of asphaltenes correlate very well with a considerable increase of rheological resistance of the interface between the oil phase and distilled water, determined according to the torsion oscillation method. Stabilization of the water-in-oil emulsions is therefore caused by the build-up of a coherent layer of asphaltenes in the water-oil interface in these cases. Deflocculants of asphaltenes in the oil phase destroy their stabilizing effect; however, the deflocculants themselves may stabilize the water-in-oil emulsions by adsorption on the water-oil interface and then the correlation between the condition of asphaltenes and emulsion stability does not hold, nor is the interfacial viscosity perceptibly increased. Under borderline conditions of emulsion stability a few percent of sodium chloride in the water phase counteracts the build-up of a stabilizing layer of asphaltenes in the water-oil interface and so do higher pH values of a buffered water phase. At low pH-values emulsion stability does not correlate with interfacial resistance. It can be concluded that asphaltenes stabilize water-in-oil emulsions if they accumulate on the water-oil interface. This interfacial layer may show a coherence, which is an indication of the presence of asphaltenes rather than a condition for stability of the emulsions.  相似文献   

8.
The emulsification processes, during which acylglycerols/zinc stearate emulsifier, water, and oil phase formed ternary systems, such as water-in-oil (W/O) emulsions, oil-in-water (O/W) dispersions, and unstable oil-water mixtures, were investigated in order to characterize the progressive transformations of the dispersed systems. The type, structure, and phase transitions of the systems were found to be determined by temperature and water phase content. Crystallization of the emulsifier caused the destabilization and subsequent phase inversion of the emulsions studied, at a temperature of 60-61 degrees C. The observed destabilization was temporary and led, at lower temperature, to W/O emulsions, "O/W + O" systems, or O/W dispersions, depending on the water content. Simultaneous emulsification and cooling of 20-50 wt % water systems resulted in the formation of stable W/O emulsions that contained a number of large water droplets with dispersed oil globules inside them ("W/O + O/W/O"). In water-rich systems (60-80 wt % of water), crystallization of the emulsifier was found to influence the formation of crystalline vesicle structures that coexisted, in the external water phase, with globules of crystallized oil phase. Results of calorimetric, rheological, and light scattering experiments, for the O/W dispersions obtained, indicate the possible transition of a monostearoylglycerol-based alpha-crystalline gel phase to a coagel state, in these multicomponent systems.  相似文献   

9.
Factors influencing water-in-oil emulsion stability during freeze/thaw-cycling, namely interfacial crystallization vs. network crystallization and the sequence of crystallization events (i.e., dispersed vs. continuous phase or vice versa), are assessed. We show that destabilization is most apparent with a liquid-state emulsifier and a continuous oil phase that solidifies prior to the dispersed phase. Emulsions stable to F/T-cycling are obtained when the emulsifier crystallizes at the oil–water interface or in emulsions where the continuous phase crystallizes after the dispersed aqueous phase. The materials used are two food-grade oil-soluble emulsifiers – polyglycerol polyricinoleate (PGPR) and glycerol monostearin (GMS) and two continuous oil phases with differing crystallization temperatures – canola oil and coconut oil. Emulsion stability is assessed with pulsed field gradient NMR droplet size analysis, sedimentation, microscopy and differential scanning calorimetry. This study demonstrates the sequence of crystallization events and the physical state of the surfactant at the oil–water interface strongly impact the freeze–thaw stability of water-in-oil emulsions.  相似文献   

10.
姜晓峰  于维钊  王继乾 《化学通报》2021,84(4):290-304,321
油水乳液和油水混合物的分离对解决工业含油废水以及原油泄漏造成的污染问题具有重要的意义。近年来应用于油水分离的超润湿材料引起了广泛的关注,并展现出良好的应用前景。本文综述了近年来利用超润湿性低成本、环保的天然材料通过过滤和吸附技术分离油水乳液和混合物的研究进展。对于每一种天然材料,如沙粒、木材、椰子壳等,介绍了代表性的研究工作,阐述了其制备过程、润湿特性以及对油水混合物或者油水乳液的分离效果,并讨论了利用超亲水/水下超疏油、超疏水/超亲油两种类型的材料分离不混溶的油水混合物、"水包油"型乳液和"油包水"型乳液等三类油水混合物的物理化学机理。最后,对该领域的挑战和未来的发展方向进行了展望。  相似文献   

11.
Three-phase geranyl acetate emulsions stabilized by a non-ionic surfactant, Laureth 4, were prepared with a constant weight fraction of a lamellar liquid crystal and varied aqueous to oil phase weight ratios according to the phase diagram. The appearance and micrographs of the drop pattern versus time were recorded. As expected, emulsions with the lower values of the water to oil (W/O) ratio appeared to be of the W/O variety while the two more stable emulsions with the highest W/O ratio appeared as oil to water (O/W). Considering the surfactant exclusive solubility in the oil, this result was unexpected and the emulsions were investigated as to their structure. Unpredictably, all the emulsions were of the O/W kind; including the highest ratio of oil to water. The reason for this unanticipated outcome was the lamellar liquid crystal being dispersed into the aqueous phase at the slightest perturbation.  相似文献   

12.
Aging W/O emulsions with various stabilities brake into “rags” – fragments with uneven shapes. Individual “rags” combine into a separate “rag” layer below supernatant oil. In the “rag” material, the continuous oil phase is enriched in heavy constituents, while the disperse phase contains two populations of water drops. Larger drops are formed by mechanical dispersion during emulsification, as indicated by their log-normal number size distributions. Smaller droplets possess exponential number size distributions, indicating a possibility of their spontaneous nucleation. The latter conclusion is supported by microscopic observation of spontaneous appearance of small droplets at a stationary oil–water interface.  相似文献   

13.
赵宁  徐坚 《高分子科学》2016,34(10):1234-1239
Separation of oil/water mixtures, especially for the emulsified oil/water mixtures, is important because of the frequent occurrence of oil spill accidents. Utilizing superwetting porous membrane has become a promising approach to separate either surfactant-free or surfactant-stabilized emulsions. Herein we report a facile and versatile strategy for preparing hydrophobic/under-oil superhydrophobic membranes by coating the skeletons of the membranes with the poly[(3,3,3-trifluoropropyl)methylsiloxane] (PTFPMS) nanoparticles. The obtained membranes could be used to separate various waterin- oil emulsions with high flux and separation efficiency. In addition, owning to the outstanding resistance of PTFPMS to the most organic solvents or oils, the modified membranes exhibited the excellent reusability and the antifouling properties that were critical in the practical applications. Many commercially available membranes can be modified by such a simple method.  相似文献   

14.
The ternary phase diagram for N-[3-lauryloxy-2-hydroxypropyl]-L-arginine L-glutamate (C12HEA-Glu), a new amino acid-type surfactant, /oleic acid (OA)/water system was established. The liquid crystal and gel complex formations between C12HEA-Glu and OA were applied to a preparation of water-in-oil (W/O) emulsions. Stable W/O emulsions containing liquid paraffin (LP) as the oil and a mixture of C12HEA-Glu and OA as the emulsifier were formed. The preparation of stable W/O emulsions containing 85 wt% water phase was also possible, in which water droplets would be polygonally transformed and closely packed, since the maximum percentage of inner phase is 74% assuming uniformly spherical droplets. Water droplets would be taken into the liquid crystalline phase (or the gel complex) and the immovable water droplets would stabilize the W/O emulsion system. The viscosity of emulsions abruptly increased above the 75 wt% water phase (dispersed phase). The stability of W/O emulsions with a lower weight ratio of OA to C12HEA-Glu and a higher ratio of water phase was greater. This unusual phenomenon may be related to the formation of a liquid crystalline phase between C12HEA-Glu and OA, and the stability of the liquid crystal at a lower ratio of oil (continuous phase). W/O and oil-in-water (O/W) emulsions containing LP were selectively prepared using a mixture of C12HEA-Glu and OA since the desirable hydrophile-lipophile balance (HLB) number for the emulsification was obtainable by mixing the two emulsifiers.  相似文献   

15.
Three-phase geranyl acetate emulsions stabilized by a non-ionic surfactant, Laureth 4, were prepared with a constant weight fraction of a lamellar liquid crystal and varied aqueous to oil phase weight ratios according to the phase diagram. The appearance and micrographs of the drop pattern versus time were recorded. As expected, emulsions with the lower values of the water to oil (W/O) ratio appeared to be of the W/O variety while the two more stable emulsions with the highest W/O ratio appeared as oil to water (O/W). Considering the surfactant exclusive solubility in the oil, this result was unexpected and the emulsions were investigated as to their structure. Unpredictably, all the emulsions were of the O/W kind; including the highest ratio of oil to water. The reason for this unanticipated outcome was the lamellar liquid crystal being dispersed into the aqueous phase at the slightest perturbation.  相似文献   

16.
Emulsions surfer alterations in their microstructure after applied on the skin, because of the interaction with skin constituents and mainly by the evaporation of volatile components. These alterations are not even considered by cosmetic formulators, but they are extremely important because they can act on formulation stability, on delivery and on permeation of actives and also on the ability to build the occlusive film, responsible for skin's moisturization. This research studied the phase changing during evaporation of emulsions made with three different oil phase: mineral oil, avocado oil, and isocethyl/stearoil stearate, as a function of the decrease on water ratio, using phase diagrams and evaporation test. It was observed the formation of liquid crystalline phases and their transition along the evaporation path for emulsions with the three different oil phases. It was also observed that these transitions occurred in different water ratios.  相似文献   

17.
We report a simple method to produce foams and emulsions of extraordinary stability by using hydrophobic cellulose microparticles, which are formed in situ by a liquid-liquid dispersion technique. The hydrophobic cellulose derivative, hypromellose phthalate (HP), was initially dissolved in water-miscible solvents such as acetone and ethanol/water mixtures. As these HP stock solutions were sheared in aqueous media, micron sized cellulose particles formed by the solvent attrition. We also designed and investigated an effective and simple process for making HP particles without any organic solvents, where both the solvent and antisolvent were aqueous buffer solutions at different pH. Consequently, the HP particles adsorbed onto the water/air or water/oil interfaces created during shear blending, resulting in highly stable foams or foam/emulsions. The formation of HP particles and their ability for short-term and long-term stabilization of interfaces strongly depended on the HP concentration in stock solutions, as well as the solvent chemistry of both stock solutions and continuous phase media. Some foams and emulsion samples formed in the presence of ca. 1 wt% HP were stable for months. This new class of nontoxic inexpensive cellulose-based particle stabilizers has the potential to substitute conventional synthetic surfactants, especially in edible, pharmaceutical and biodegradable products.  相似文献   

18.
Oil-in-glycerol/water emulsions at various ratios of water to glycerol in the external phase were prepared with polyoxyethylated octylphenols and light mineral oil. As the water concentration in the external phase decreased, oil droplet size decreased down to a minimum size beyond which oil separation occurred. Also, the cloud points of various surfactants were depressed toward room temperature as the water content of the glycerol/water mixtures decreased. It was possible therefore to correlate the concentration of water needed for formation of the smallest droplets to the concentration of water needed for depression of the cloud point of each surfactant to room temperature.  相似文献   

19.
Water-in-water (W/W) emulsions are colloidal dispersions of an aqueous solution into another aqueous phase. Such dispersions can be formed in mixtures of at least two hydrophilic macromolecules, which are thermodynamically incompatible in solution, generating two immiscible aqueous phases. W/W emulsions are much less known than conventional oil-in-water or water-in-oil emulsions, despite the fact that phase separation in aqueous mixtures is highly common. The thermodynamics and the phase behavior of segregative phase separation in mixtures of hydrophilic polymers have focused a great attention, with many excellent scientific reports in the literature. However, the kinetic stability of water-in-water emulsions is generally difficult to control, since amphiphilic molecules do not adsorb on water-water interfaces. Consequently, surfactants are not good stabilizers for W/W emulsions, and until recently, only a limited number of scientific studies have dealt with the formation and stabilization of emulsions in aqueous two-phase systems. Recent advances and successful results in the stabilization of these emulsions, by alternative mechanisms, have triggered a renewed interest. Nowadays, fast progress is being made in formation and stabilization methods, and new knowledge is rapidly acquired, opening a wide range of novel possibilities for practical applications. Interestingly, highly stable water-in-water emulsions can be formulated using fully biocompatible and edible components, and consequently, these emulsions can be used in food formulations, among many other interesting applications. This review describes the general background of research in the field, and focuses on recent scientific advances, including phase behavior, formation, stability and kinetic aspects, as well as applications such as formation of microgels, encapsulation and drug delivery.  相似文献   

20.
A series of novel and stable water in oil (W/O) gel-emulsions was created by utilizing a new cholesteryl derivative, a low-molecular mass gelator (LMMGs), as a stabilizer. In the emulsions, n-heptane, n-octane, n-nonane, n-decane, tertiary butyl methacrylate (t-BMA), methyl methacrylate (MMA), or styrene can be used as a continuous phase, water as a dispersed phase, and the stabilizer in the continuous phase is only 2% (w/v). Importantly, the gel-emulsions could be prepared by simple agitation of the mixtures at room temperature, while heating, cooling, and addition of a cosolvent or other additional component are unnecessary. SEM and optical microscopy studies revealed the foam-like structures of the gel-emulsions. Rheological measurements demonstrated that the gel-emulsions are mechanically stable and exhibit typical viscoelastic properties. Surprisingly, the storage modulus, G', and the yield stress of the gel-emulsions with the alkanes as continuous phase decrease along with increasing the volume ratio of the dispersed phase, water, a property different from those of conventional gel-emulsions reported in the literature. From the viewpoint of application, the gel-emulsions as prepared are superior to others due to their simplicity in preparation, less amount of stabilizer needed, and the nonionic nature of the stabilizer, which must benefit practical applications. Furthermore, porous polymer monoliths could be prepared by polymerizing gel-emulsions with organic monomers as a continuous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号