首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmon sperm DNA was used as template to assembly and nucleate CdS nanoparticles.Transmission electron microscopy(TEM)images showed that the CdS nanoparticles fromed unique nanostructure which present regular and parallel chains along DNA molecular chaing.The width of every chain was about 3 nm.Raman and Xray photoelectron energy spectroscopy(XPS) confirmed that the nucleation sites of CdS nanoparticles were phosphate acid groups of DNA.  相似文献   

2.
CdS nanoparticles were formed on the surface of silica microspheres by the improved layer‐by‐layer self‐assembled technique. High‐resolution electron microscope (HRTEM) image and energy dispersive x‐ray analysis (EDX) confirmed formation of a quasi‐continuous CdS nanoparticles film on the silica microspheres. The results of UV‐vis and fluorescence spectra display that the spherical silica surface has a great effect on the photoluminescence of the loaded CdS nanoparticles. In contrast to the CdS nanoparticles powder, the composite can exhibit the emission ascribed to the band gap transition when the CdS nanoparticles film is relatively thick. This phenomenon is probably due to an enhancement of the crystallinity of CdS nanoparticles induced by the silica spheres.  相似文献   

3.
以聚乙烯烷酮(PVP)为修饰剂,制备了CdS纳米微粒。实验结果表明PVP与CdS纳米微粒间存在着强的相互作用,PVP和CdS纳米微粒的荧光都在很大程度上发生淬灭。其原因在于作为修饰剂的PVP与CdS纳米微粒子间发生了特殊缔合.受激时形成共振激发态,电子能量弛豫被延迟。  相似文献   

4.
离子交换膜中CdS单分散纳米晶的合成及其光学性质   总被引:5,自引:0,他引:5  
王世铭  刘平  付贤智 《物理化学学报》2005,21(10):1151-1155
以硫代乙酰胺(TAA)为前驱体, 采用液相反应在全氟磺酸离子交换膜(Nafion)中自组装得到了均匀分布、单分散的纳米CdS晶体;与文献报道的前驱体如Na2S和H2S不同, TAA可以在全氟磺酸离子膜中均匀扩散, 最终在Nafion薄膜中得到均匀分布的纳米CdS晶体. 利用高分辨电子显微镜(HRTEM)、X射线衍射仪(XRD)和能量散射X射线分析(EDXA)研究了Nafion薄膜模板中CdS纳米晶体的形成机理、晶粒大小和分布;采用紫外- 可见吸收光谱和荧光光谱分析了Nafion薄膜中单分散纳米CdS晶体的光学性质. 结果表明, 随CdS纳米晶体尺寸的减小, 量子尺寸效应明显增强;在紫外吸收谱中表现为吸收边明显蓝移, 而在光致发光谱中, 表现为带边发射的蓝移.  相似文献   

5.
Engelhard titanosilicate (ETS-10) supported cadmium sulphide (CdS) nanoparticles were synthesized and characterized by various solid state techniques including: XRD, DR UV-Vis, TEM and FESEM. The effect of different synthesis routes of CdS nanoparticles on its physicochemical character was studied. It was observed that CdS nanoparticles prepared by both in situ sulphur reduction (CdS-IS) and reverse micelle (CdS-RM) methods showed similar roperties. However, CdS-IS nanoparticles are more feasible and economically practical. The reflectance measurements of the as-synthesized CdS nanoparticles are apparently blue-shifted compared to bulk CdS. This phenomenon of blue-shifted absorption edge has been ascribed to an increase in bandgap energy with a decrease in particle sizes. The bandgap of the as-synthesized CdS samples was calculated from the linear correlation of [F(R) hν]2 and hν. The bandgap of CdS in ETS-10 was noticeably slightly reduced when compared with the as-synthesized CdS (8 nm) due to the formation of cluster arrays on the pores of ETS-10.  相似文献   

6.
The pH‐induced self‐assembly of three synthetic tripeptides in water medium is used to immobilize luminescent CdS nanoparticles. These peptides form a nanofibrillar network structure upon gelation in aqueous medium at basic pH values (pH 11.0–13.0), and the fabrication of CdS nanoparticles on the gel nanofiber confers the luminescent property to these gels. Atomic force microscopy, field‐emission scanning electron microscopy, and high‐resolution transmission electron microscopy clearly reveal the presence of CdS nanoparticles in a well‐defined array on the gel nanofibers. This is a convenient way to make organic nanofiber–inorganic nanoparticle hybrid nanocomposite systems. The size of the CdS nanoparticles remains almost same before and after deposition on the gel nanofiber. Photoluminescence (PL) measurement of the CdS nanoparticles upon deposition on the gel nanofibers shows a significant blue shift in the emission spectrum of the nanoparticles, and there is a considerable change in the PL gap energy of the CdS nanoparticles after immobilization on different gel nanofibrils. This finding suggests that the optoelectronic properties of CdS nanoparticles can be tuned upon deposition on gel nanofibers without changing the size of the nanoparticles.  相似文献   

7.
CdS, CdS:Mn, ZnS, ZnS:Mn and ZnS:Tb nanoparticles were prepared by using carboxylic-containing copolymer, polystyrene-maleic anhydride (PSM), as template. Average particle size, 2.5 nm for CdS nanoparticles, is deduced from UV-vis absorption spectra and consistent with the observation of TEM. Characteristic emissions of the doping ions can be observed and the energy transfer from the host to the doping ions is verified. Fourier transform infrared (FTIR) spectra were studied to confirm the bonding effect of the copolymer and the metal ions. PSM hydrolyzed and chelated metal ions by its carboxylic group, and then performed as a protection layer after the formation of nanoparticles.  相似文献   

8.
《Supramolecular Science》1998,5(5-6):475-478
The reversed micelles of CdS nanoparticles capped with oligomer–polymaleic acid octadecanol ester (PMAO) were synthesized by a colloid chemical method in an aqueous system. The chemical ratio of PMAO between the carboxylic group and the hydrocarbon chain was controlled to 1.5 : 1. The PMAO-capped CdS nanoparticles were transferred on to CaF2 and Si substrates by the Langmuir–Blodgett (LB) technique. Surface pressure–area isotherms indicated that PMAO-capped CdS nanoparticles could form a stable monolayer on the water subphase. The measurement of FTIR and small angle X-ray diffraction showed that the reversed micelles of PMAO-capped CdS nanoparticles were formed with a uniform size and order in LB films. The photoluminescence properties of PMAO-capped CdS both in the solution and in the LB film indicated that the photoluminescence peaks of reversed micelles obviously changed as a result of the energy transfer from PMAO to CdS and the interaction between clusters.  相似文献   

9.
CdS nanoparticles were precipitated by the reaction of cadmium acetate with sodium sulphide in the presence of cetyltrimethylammonium (CTA) and deposited on montmorillonite (MMT). The resulting CdS-MMT nanocomposite contained 6 wt.% of CdS and 30 wt.% of CTA. Band-gap energy of CdS was estimated at 2.63±0.09 eV using the Tauc plot. The size of CdS nanoparticles was calculated from the band-gap energy at 5 nm and from the micrographs of transmission electron microscopy (TEM) at 5 nm. Selected area electron diffraction (SAED) recognized the cubic structure of CdS (Hawleite). The dynamic light scattering (DLS) method confirmed that CdS nanoparticles were anchored on the surface of MMT particles. CTA was found to be intercalated into MMT and adsorbed on its external surface. CdS-MMT was used for the photoreduction of carbon dioxide dissolved in NaOH solutions. The yields of originating gas products can be arranged in the order: H(2) ? CH(4) > CO. Amounts of these products were 4-8 folds higher then those obtained with TiO(2) Evonic P25. Hydrogen reduced CO(2) to CO and CH(4).  相似文献   

10.
The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H(2) production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)(2)) as the CdS precursor. These nanosized composites reach a high H(2)-production rate of 1.12 mmol h(-1) (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles. This work highlights the potential application of graphene-based materials in the field of energy conversion.  相似文献   

11.
采用电化学方法在铟锡氧化物(ITO)导电玻璃上制备了高度有序的ZnO纳米棒阵列, 在ZnO纳米棒阵列上先后电化学沉积CdS纳米晶膜及聚3-己基噻吩(P3HT)薄膜得到P3HT修饰的一维有序壳核式CdS/ZnO纳米阵列结构, 并通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、能量散射X射线(EDX)等表征手段证实了该结构的形成. 以此纳米结构薄膜为光阳极组装新型半导体敏化太阳电池, 研究了CdS纳米晶膜的厚度和P3HT薄膜的沉积对电池光伏性能的影响, 初步探讨了电荷在电池结构中的传输机理, 结果表明, CdS纳米晶膜和P3HT薄膜的沉积有效地拓宽了光阳极的光吸收范围, 实验中电池的光电转换效率最高达到1.08%.  相似文献   

12.
由于近红外光在太阳光谱中占44%,因此,近红外光驱动的光催化剂的研制具有十分重要的意义.上转换发光材料可将低能量的近红外光子转换为高能光子,这种高能光子可以通过构建荧光共振转移系统将能量转移并活化量子效率较高的半导体材料,对于太阳能的转化利用具有潜在的应用前景.在本文中,通过胶体化学的过程在电纺丝制备的内嵌CdS纳米颗粒以及上转换荧光纳米颗粒(UCNPs)的二氧化硅复合纳米纤维表面外延生长一层二氧化钛层,通过高温煅烧得到二氧化钛复合纳米管.我们通过二氧化硅结构将CdS纳米颗粒与上转换荧光纳米颗粒紧紧束缚在一起,实现较高的荧光共振能量转移.而且,选择β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)作为纳米能量转换器,替代以前研究工作中使用的β-NaYF4:Yb(30%),Tm(0.5%)或者β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4纳米颗粒,来进一步提高近红外光的转换效率.通过透射电子显微镜照片很清楚的观察到制备的TiO2复合纳米管内部内嵌有大量的CdS与上转换纳米颗粒.通过X-射线衍射以及X-射线光电子能谱能仪器对产物的物相以及表面的化学组成进行了细致的表征.结果显示,通过本实验方法已经成功获得了TiO2复合纳米管.用稳态与瞬态荧光仪研究了最终样品的荧光性质.研究结果揭示,与上转换纳米颗粒以及二氧化硅复合纳米纤维相比,复合二氧化钛纳米管可以将上转换荧光纳米颗粒的(UV-Vis)部分荧光完全淬灭了.特别是,铒离子的荧光(650 nm)也被有效淬灭转移,说明本研究采用β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米能量转换器,可以提高近红外光的转换效率,紫外-可见吸收光谱证实,这种二氧化钛纳米管在紫外-可见光区中的吸收光谱与β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米颗粒的荧光光谱具有较大的重叠,使得上转换荧光纳米颗粒与CdS以及二氧化钛组分之间的荧光共振转移的效率大大提高,进而会显著提高光催化的效果.以罗丹明染料作为污染物为模型,我们研究了罗丹明染料在氙灯下或者近红外光光照下的光催化分解实验.研究结果表明,90%的罗丹明染料分子在20 min内就被降解掉,效率高于其它的近红外光催化剂.上转换荧光纳米颗粒的能量转换效率可以得到大幅度提高,本研究工作中制备的光催化剂利用太阳能的效率将会得到极大提高,在未来为能源危机以及环境保护提供一种可供选择的方法与技术.  相似文献   

13.
将 Cd S纳米粒子复合在 Ti O2 纳米多孔膜上 ,用染料 Ru( bpy) 2 ( NCS) 2 对此复合半导体纳米膜电极进行敏化 ,测量了不同 Cd S复合量的 ITO/Ti O2 /Cd S/Ru( bpy) 2 ( NCS) 2 光阳极组成光电池的能量转换效率 .实验证明 ,ITO/Ti O2 /Cd S/Ru( bpy) 2 ( NCS) 2 作为太阳电池光阳极的能量转换效率与 Ti O2 /Cd S复合半导体中 Cd S的含量有关 .当 Cd S复合时间为 5 min的电池的短路电流为 5 .2 3A/m2 ,开路电压为 0 .71 6 V,能量转换效率为 0 .77% .  相似文献   

14.
A microwave-assisted (4-6 min) method was used for the preparation of CdS nanoparticles in 1-ethyl-3-methylimidazolium ethyl sulfate,a halide-free room-temperature ionic liquid (RTIL).The samples were characterized by powder X-ray diffraction,energy dispersive X-ray spectroscopy,and scanning electron microscopy.Diffuse reflectance spectra showed a 1.33 eV blue shift relative to bulk CdS.The photocatalytic activities of the nanoparticles for photodegradation of methylene blue (MB) using UV and visible light ...  相似文献   

15.
巯萘剂表面修饰的CdS纳米微粒的合成及发光特性   总被引:6,自引:0,他引:6  
用疏萘剂(TN)作为表面修饰剂,在甲醇溶液中合成了CdS/TN纳米微粒,用TEM测得纳米微粒呈球形,其粒径约10nm,吸收光谱和荧光光谱研究表明,[S2-]/[TN]浓度比、TN和镉离子的浓度对CdS/TN纳米微粒的粒径及发光特性具有显著影响,且随着条件的改变,CdS/TN纳米微粒的发射波长红移100nm,表现出明显的量子尺寸特性.XPS显示所制得表面修饰纳米微粒的核为CdS.  相似文献   

16.
Stable crystalline CdS nanoparticles were synthesized in Nafion ionomer membranes by using thioacetamide (TAA) as a nonionic precursor. Unlike the ionic precursors such as Na(2)S, TAA could diffuse into the cationic-exchangeable ionomer membranes much more uniformly. This led to the formation of homogeneously distributed CdS nanoparticles in the Nafion membranes, which was confirmed by elemental mapping with energy-dispersive X-ray (EDAX) analysis. Results from the characterizations on the physical properties, the chemical stability, and the photocatalytic properties of these CdS nanoparticles embedded in Nafion membranes are presented and discussed. The parallel data from the CdS nanoparticles in Nafion membranes prepared from the ionic Na(2)S precursor are also shown for comparison.  相似文献   

17.
Here, we report the role of dopant concentration and surface coating of CdS: Eu3+ nanocrystals on the modification of crystal structure and their photoluminescence properties by steady-state and time resolved fluorescence studies. It is found that photoluminescence properties are sensitive to the crystal structure which is controlled by surface coating and dopant concentration. The emission intensity of the peak at 614 nm (5D0 --> 7F2) of the Eu3+-ions is found to be sensitive to the doping and surface coating of CdS nanocrystals. It is found that the average decay times tau are 248, 353 and 499 micros for 0.25, 0.5 and 1.0 mol% Eu ions doped into CdS nanocrystals, respectively. From the decay time measurements, it is evident that the energy transfer occurs from CdS nanoparticles to Eu3+ ions and the calculated energy transfer efficiency from CdS nanoparticles to Eu3+ ions is 9.2 and 35% for Eu3+ ions coated and doped CdS nanoparticles, respectively. Our analysis suggests that site symmetry of ions plays a very important role in the modifications of radiative and nonradiative relaxation mechanisms.  相似文献   

18.
Tri-n-octylphosphine oxide-capped CdS nanoparticles were synthesized with the cadmium(II) complex of thiocarbohydrazide as a precursor. Nanocomposites were prepared by mixing a toluene solution of poly(ethylene oxide) (PEO) and the obtained CdS nanoparticles. The ultraviolet-visible spectroscopy measurements showed a blue shift of the onset of optical absorption, compared to bulk CdS, which confirmed the presence of nanostructured CdS. A transmission electron microscopy micrograph of the nanocomposite depicted that the nanoparticles are well dispersed in the PEO matrix. Differential scanning calorimetry analysis revealed hindered crystallization of PEO in the presence of CdS nanoparticles. It was also found that increasing the nanoparticle content led to the shift of the onset of decomposition of the matrix towards higher temperature.  相似文献   

19.
XRD and TEM characterisation evidenced the formation of well-dispersed CdS nanoparticles inside a phosphate glass matrix. Optical absorption and time-resolved photoluminescence study were carried out on the prepared glass samples. Optical absorption revealed the fast character of the growth of CdS nanoparticles in this medium. Photoluminescence spectra showed only one large band with a maximum at almost 740 nm, which was associated to transitions between energy levels within the bandgap of the CdS nanoparticles. From the steady state and time-resolved measurements, it was suggested that the emission comes mainly from sulfur vacancies inside the nanocrystals and on its surface, which act as deep traps for the photogenerated electrons. The creation of such vacancies was attributed to the loss of sulfur during the glass preparation as evidenced from a chemical analysis using energy dispersive X-ray spectrometry. These traps may be also induced by the fast growth of CdS nanocrystals in this matrix or laser exposure during PL measurements. These CdS-doped glasses with an intense absorption in the UV–Vis region and a large emission band with long lifetime and a large Stokes-shift are adequate for luminescent solar concentrators, photocatalytic applications and solid-state lasers.  相似文献   

20.
Octyl octanoate (O-OL) underwent hydrolysis in sodium octanoate (NaOA) reversed micelles in 85:15 = isooctane:octanol (OL) (v/v), containing w = [H2O]/[NaOA] = 40. The products of the hydrolysis, octanoic acid (OA) and octanol (OL), lead to the formation of additional (albeit smaller) reversed micelles; hence the process is considered to be self-reproducing. Self-reproduction was found to be catalyzed by lithium hydroxide, solubilized in the water pools, as well as by hydrogen sulfide, added to the solution of the reversed micelles. Addition of hydrogen sulfide to cadmium perchlorate containing self-reproducing reversed micelles resulted in the formation of cadmium sulfide (CdS) nanoparticles. Diameters of the CdS containing nanoparticles could be altered from 5.4 to 1.8 nm by changing the [Cd2+]/[H2S] ratios from 0.25 to 10. The CdS nanoparticles formed were capped by mercaptopropionic acid, isolated as solids, and could be repeatedly redispersed in water without changing their sizes. Additional CdS nanoparticles were generated in the supernatants removed from the precipitated capped CdS nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号