首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the effect of annealing on the properties of amorphous hydrogenated silicon carbide thin films. The samples were deposited onto different substrates by plasma enhanced chemical vapor deposition at temperatures between 300 and 350 °C. The gaseous mixture was formed by silane and methane, at the ‘silane starving plasma regime’, and diluted with hydrogen. Rutherford backscattering and Fourier transform infrared spectrometry were used, respectively, to determine the atomic composition and chemical bonds of the samples. The film’s structure was analyzed by means of X-ray absorption fine structure and X-ray diffraction. For temperatures higher than 600 °C, amorphous silicon carbide films annealed under inert atmosphere (Ar or N2) clearly changed their structural and compositional properties due to carbon loss and oxidation, caused by the presence of some oxygen in the annealing system. At 1000 °C, crystallization of the films becomes evident but only stoichiometric films deposited on single crystalline Si[1 0 0] substrates presented epitaxial formation of SiC crystals, showing that the crystallization process is substrate dependent. Films annealed in high-vacuum also changed their structural properties for annealing temperatures higher than 600 °C, but no traces of oxidation were observed or variations in their silicon or carbon content. At 1200 °C the stoichiometric films are fully polycrystalline, showing the existence of only a SiC phase. The XANES signal of samples deposited onto different substrates and annealed under high-vacuum also show that crystallization is highly substrate dependent.  相似文献   

2.
A series of ZnO films were grown on GaAs(0 0 1) substrates at different growth temperatures in the range 250–720°C by metalorganic chemical vapor depostion. Field emission scanning electron microscopy was utilized to investigate the surface morphology of ZnO films. The crystallinity of ZnO films was investigated by the double-crystal X-ray diffractometry. The optical and electrical properties of ZnO films were also investigated using room-temperature photoluminescence and Hall measurements. Arrhenius plots of the growth rate versus reciprocal temperature revealed the kinetically limited growth behavior depending on the growth temperature. It was found that the surface morphology, structural, optical and electrical properties of the films were improved with increasing growth temperature to 650°C. All the properties of the film grown at 720°C were degraded due to the decomposition of ZnO film.  相似文献   

3.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

4.
Optical transient current spectroscopy (OTCS) has been used to investigate defects in the low-temperature-grown GaAs after postgrowth rapid thermal annealing (RTA). Two samples A and B were grown at 220°C and 360°C on (0 0 1) GaAs substrates, respectively. After growth, samples were subjected to 30 s RTA in the range of 500–800°C. Before annealing, X-ray diffraction measurements show that the concentrations of the excess arsenic for samples A and B are 2.5×1019 and 1×1019 cm−3, respectively. It is found that there are strong negative decay signals in the optical transient current (OTC) for the annealed sample A. Due to the influence of OTC strong negative decay signals, it is impossible to identify deep levels clearly from OTCS. For a comparison, three deep levels can be identified for sample B before annealing. They are two shallower deep levels and the so-called AsGa antisite defect. At the annealing temperature of 600°C, there are still three deep levels. However, their structures are different from those in the as-grown sample. OTC strong negative decay signals are also observed for the annealed sample B. It is argued that OTC negative decay signals are related to arsenic clusters.  相似文献   

5.
InAs was grown by low-pressure metalorganic chemical vapor deposition on vicinal GaAs(1 0 0) substrates misoriented by 2° toward [0 0 1]. We observed InAs crystal growth, at substrate temperatures down to 300°C, employing in situ plasma-generated arsine radicals as the arsenic source. The in situ generated arsine was produced by placing solid arsenic downstream of a microwave driven hydrogen plasma. Trimethylindium (TMIn) feedstock carried by hydrogen gas was used as the indium source. The Arrhenius plot of InAs growth rate vs. reciprocal substrate temperature displayed an activation energy of 46.1 kcal/mol in the temperature range of 300–350°C. This measured activation energy value is very close to the energy necessary to remove the first methyl radical from the TMIn molecule, which has never been reported in prior InAs growth to the best of authors’ knowledge. The film growth mechanism is discussed. The crystallinity, infrared spectrum, electrical properties and impurity levels of grown InAs are also presented.  相似文献   

6.
Two-dimensional (2D) periodic arrays of Co metal and Co silicide nanodots were successfully fabricated on (0 0 1)Si substrate by using the polystyrene (PS) nanosphere lithography (NSL) technique and thermal annealing. The epitaxial CoSi2 was found to start growing in samples after annealing at 500 °C. The sizes of the Co silicide nanodots were observed to shrink with annealing temperature. From the analysis of the selected-area electron diffraction (SAED) patterns, the crystallographic relationship between the epitaxial CoSi2 nanodots and (0 0 1)Si substrates was identified to be [0 0 1]CoSi2//[0 0 1]Si and (2 0 0)CoSi2//(4 0 0)Si. By combining the planview and cross-sectional TEM examination, the epitaxial CoSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the shape of the faceted epitaxial CoSi2 nanodot was identified to be inverse pyramidal. The observed results present the exciting prospect that with appropriate controls, the PS NSL technique promises to offer an effective and economical patterning method for the growth of a variety of large-area periodic arrays of uniform metal and silicide nanostructures on different types of silicon substrates.  相似文献   

7.
Using single crystalline Si wafer substrates, ion-assisted deposition (IAD) has recently been shown [J. Crystal Growth 268 (2004) 41] to be capable of high-quality high-rate epitaxial Si growth in a non-ultra-high vacuum (non-UHV) environment at low temperatures of about 600 °C. In the present work the non-UHV IAD method is applied to planar borosilicate glass substrates featuring a polycrystalline silicon seed layer and carefully optimised. Using thin-film solar cells as test vehicle, the best trade-off between various contamination-related processes (seed layer surface as well as bulk contamination) is determined. In the optimised IAD process, the temperature of the glass substrate remains below 600 °C. The as-grown Si material is found to respond well to post-growth treatments (rapid thermal annealing, hydrogenation), enabling respectable open-circuit voltages of up to 420 mV under 1-Sun illumination. This proves that the non-UHV IAD method is capable of achieving device-grade polycrystalline silicon material on seeded borosilicate glass substrates.  相似文献   

8.
We have investigated the nucleation and ripening of pairs of InAs/GaAs quantum dot layers separated by thin (2–20 nm) GaAs spacer layers. Reflection high energy electron diffraction (RHEED) measurements show that the 2D–3D transition in the second layer can occur for less than 1 monolayer deposition of InAs. Immediately after the islanding transition in the second layer chevrons were observed with included angles as low as 20° and this angle was seen to increase continuously to 45±2° as more material was deposited. Atomic force microscopy showed the dot density in both layers to be the same. It is proposed that surface morphology can radically alter processes that determine the nucleation and ripening of the 3D islands.  相似文献   

9.
The structure and thermal stability of ZrO2 films grown on Si (1 0 0) substrates by metalorganic chemical vapor deposition have been studied by high-resolution transmission electron microscopy, selected area electron diffraction and X-ray energy dispersive spectroscopy. As-deposited films consist of tetragonal ZrO2 nanocrystallites and an amorphous Zr silicate interfacial layer. After annealing at 850°C, some monoclinic phase is formed, and the grain size is increased. Annealing a 6 nm thick film at 850°C in O2 revealed that the growth of the interfacial layer is at the expense of the ZrO2 layer. In a 3.0 nm thick Zr silicate interfacial layer, there is a 0.9 nm Zr-free SiO2 region right above the Si substrate. These observations suggest that oxygen reacted with the Si substrate to grow SiO2, and SiO2 reacted with ZrO2 to form a Zr silicate interfacial layer during the deposition and annealing. Oxygen diffusion through the tetragonal ZrO2 phase was found to be relatively easier than through the monoclinic phase.  相似文献   

10.
Cadmium telluride (CdTe) thin films were prepared by the closed-space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the annealed films at 450 °C for 30 min were dipped in AgNO3–H2O solution at room temperature. These films were again annealed at 450 °C for 1 h to obtain silver-doped samples. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrically i.e. DC electrical resistivity as well as photo resistivity by van der Pauw method at room temperature, dark conductivity, activation energy analysis as a function of temperature by two-probe method under vacuum, and spectrophotometry. The electron microprobe analyzer (EMPA) results showed an increase of Ag content composition in the samples by increasing the immersion time of films in solution. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by doping of Ag. A significant change in the shape and size of the CdTe grains were observed.  相似文献   

11.
The 30° rotation domains in ZnO films were studied by transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The cross-section and plane-view observations reveal that the 30° rotation domains have elliptical cylindrical shape, with the longitude axis along one of the 1 1 2¯ 0 directions and the short axis along one of the 1¯ 1 0 0 orientations, respectively. The volume fraction of the 30° rotation domains is about 1%. Due to the elliptical shape of the domain boundaries along the [0 0 0 1]ZnO direction, partially disordered superlattice-like structures are formed. As shown by the HREM images and Zn elemental mapping, these super-lattices are most likely caused by periodical segregation and depletion of Zn along the domain boundary for compensating the mismatched lattice strain.  相似文献   

12.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

13.
In this article, multiple-step rapid thermal annealing (RTA) processes for the activation of Mg doped GaN are compared with conventional single-step RTA processes. The investigated multiple-step processes consist of a low temperature annealing step at temperatures between 350°C and 700°C with dwell times up to 5 min and a short time high temperature step. With optimized process parameters, and multiple-step processes, we achieved p-type free carrier concentrations up to 1–2×1018 cm−3. The best achieved conductivity, so far, lies at 1.2 Ω−1 cm−1. This is a 50% improvement compared to conventional single-step process at 800°C, 10 min.  相似文献   

14.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

15.
We investigate the growth behavior and microstructure of Ge self-assembled islands of nanometer dimension on Si (0 0 1) substrate patterned with hexagonally ordered holes of 25 nm depth, 30 nm diameter, and 7×1010 cm−2 density. At 9 Å Ge coverage and 650 °C growth temperature, Ge islands preferentially nucleate inside the holes, starting at the bottom perimeter. Approximately 14% of the holes are filled by Ge islands. Moiré fringe analysis reveals partial strain relaxation of about 72% on average, which is not uniform even within a single island. Crystalline defects such as dislocation are observed from islands smaller than 30 nm. Increased Ge coverage to 70 Å forms larger aggregates of many interconnected islands with slightly increased filling factor of about 17% of the holes. Reducing the growth temperature to 280 °C results in much higher density of islands with a filling factor of about 80% and with some aggregates. The results described in this report represent a potential approach for fabricating semiconductor quantum dots via epitaxy with higher than 1010 cm−2 density.  相似文献   

16.
In this paper, we report the preparation of nanocrystalline ZnO thin films on Si (1 0 0) substrates using a simple method, in which a resistive thermal evaporation of Zn and a two-step annealing process were employed. The aim of the first annealing step in an oxygen ambient at 300°C for 2 h is to form ZnO layers on the surface of the Zn films to prevent the diffusion of the metallic Zn from the films during the high-temperature annealing process. To obtain high-quality ZnO films, a high-temperature annealing step was performed at temperature in the range of 600–900°C. The effects of the annealing temperature on the photoluminescence (PL) and orientation of ZnO nanocrystalline thin films were studied. A very strong near-band-edge emission around 375 nm with a full-width at half-maximum of 105 meV and a relatively weak emission around 510 nm related to deep-level defects were observed, which indicated that high-quality ZnO films have been obtained.  相似文献   

17.
Superlattices of cubic gallium nitride (GaN) and gallium arsenide (GaAs) were grown on GaAs(1 0 0) substrates using metalorganic vapor phase epitaxy (MOVPE) with dimethylhydrazine (DMHy) as nitrogen source. Structures grown at low temperatures with varying layer thicknesses were characterized using high resolution X-ray diffraction and atomic force microscopy. Several growth modes of GaAs on GaN were observed: step-edge, layer-by-layer 2D, and 3D island growth. A two-temperature growth process was found to yield good crystal quality and atomically flat surfaces. The results suggest that MOVPE-grown thin GaN layers may be applicable to novel GaAs heterostructure devices.  相似文献   

18.
Crystalline ZnO nanoparticles were synthesized on Si substrates with or without a Au catalyst by a chemical vapor deposition (CVD) method using ZnS as the source material. The average sizes are in the range of 40–200 nm and the densities of 104–1010 cm−2. In the absence of an Au catalyst, the average nanoparticle size firstly decreases and then increases with increasing substrate temperature while the nanoparticle density decreases as the substrate temperature increases. In the presence of an Au catalyst, ZnO nanoparticles only grow when the substrate temperature is higher than 300°C and the higher the substrate temperature the denser the nanoparticles are deposited. The density of the ZnO nanoparticles grown on a Si (1 1 1) substrate is higher than that on a Si (1 0 0) substrate with or without Au catalyst.  相似文献   

19.
MgO films were grown on (0 0 1) yttria-stabilized zirconia (YSZ) substrates by molecular beam epitaxy (MBE). The crystalline structures of these films were investigated using X-ray diffraction and transmission electron microscopy. Growth temperature was varied from 350 to 550 °C, with crystalline quality being improved at higher temperatures. The MgO films had a domain structure: (1 1 1)[1 1 2¯]MgO(0 0 1)[1 0 0]YSZ with four twin variants related by a 90° in-plane rotation about the [1 1 1]MgO axis. The observed epitaxial orientation was compared to previous reports of films grown by pulsed laser deposition and sputtering and explained as resulting in the lowest interface energy.  相似文献   

20.
Investigation of Ni/Au-contacts on p-GaN annealed in different atmospheres   总被引:1,自引:0,他引:1  
We investigated the effect of different annealing atmospheres on contact behaviour of Ni/Au contacts on moderately doped p-GaN layers. We used the annealing gases N2, O2, Ar, and forming gas (N2/H2) at varying annealing temperatures from 350°C to 650°C in steps of 50°C. The p-GaN samples were either metalorganic chemical vapor deposition or molecular beam epitaxy grown. Contact characterization was done after each annealing step by using the circular transmission line model. Specific contact resistances were determined to be in the low 10−4 Ω cm2 range for oxidized contacts. Accompanying chemical analysis using depth resolved Auger electron spectroscopy revealed that NiO was formed and Au diffused towards the interface, whereas annealing in forming gas prevented oxidation and did not lead to Ohmic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号