首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过化学共沉淀法制备了Sr0.95WO4∶xEu3+∶(0.05-x)Tb3+荧光粉.采用X射线粉末衍射仪、扫描电子显微镜和荧光光谱仪对样品材料的结构、形貌和发光性能进行了表征.分别讨论了在不同反应温度下及稀土离子Eu3+和Tb3+共掺比例变化对荧光粉的发光性能和形貌的影响.结果表明:所得SrWO4∶xEu3+∶(0.05-x)Tb3样品是由无规则棒组成的发光材料,它们在800℃时,发光性能最好;样品在223 nm紫外光的激发下,在543 nm和614 nm处,呈现出两个主要发光中心,分别归属于5D4→7F5和5D0→7F2跃迁,说明稀土离子Eu3+和Tb3具有良好的发光性能,同时随着Eu3和Tb3+掺杂比例的改变,荧光体的发光色度也在不断改变.  相似文献   

2.
通过微波法制备了CaMoO4:Tb3+,Eu3+白色荧光粉.采用X射线粉末衍射仪、扫描电子显微镜和荧光光谱仪对样品材料的结构、形貌和发光性能进行了表征.分别讨论了在不同助剂、不同反应浓度、不同反应温度及稀土离子Eu3+和Tb3+共掺比例变化对荧光粉的发光性能的影响.结果表明:不加活性剂所得CaMoO4:Tb3+,Eu3+样品在反应浓度为0.06 mol/L、反应温度为120℃时发光性能最好;通过调节CaMoO4:Tb3+,Eu3+荧光粉中稀土离子Eu3+和Tb3+共掺比例荧光粉的发光颜色可以很容易地从冷白光变为暖白光.  相似文献   

3.
采用凝胶-燃烧法,在活性炭弱还原气氛下合成了新型荧光粉Sr3-xMgSi3O10∶Tb3x+,通过热分析仪、红外光谱、X射线粉末衍射、X射线能量色散谱仪及荧光分光光度计等对产物的形成过程、结构、组成及发光性质进行了分析和表征。结果表明:干凝胶起火燃烧得前驱物,经900℃还原热处理即可得目标产物,其晶体结构与Sr2MgSi2O7相似,同属四方晶系。Sr3-xMgSi3O10∶Tb3x+的激发光谱为一位于200~300nm的宽带,主激发峰在249nm左右;发射光谱由491nm,544nm,586nm,624nm等一系列窄带发射峰组成,归属于Tb3+的5D4到7FJ(J=6,5,4,3)的跃迁。主发射峰位于544nm,对应于Tb3+的5D4→7F5的能级跃迁,导致一种黄绿光发射。研究发现:还原温度及Tb3+掺杂浓度对发光强度有着重要的影响,并对浓度猝灭机制进行了探讨。  相似文献   

4.
采用溶胶-凝胶法在室温下制备了稀土Tb3+掺杂的以BaO-3SiO2为基质的发光材料,通过DTA-TG、IR、XRD、SEM、激发和发射光谱图对材料的结构和发光性能进行了研究.DTA-TG测试表明,615℃时材料发生晶型转变;IR光谱显示,材料除形成Si-O-Si键外,主要形成Ba-O-Si和Ba-O键;XRD进一步测试证明,主要形成BaSiO3晶体结构.SEM显示,晶体呈四面体和多面体颗粒结构.激发和发射光谱图显示,Tb3+在BaO-3SiO2基质中的掺杂量为2.50mol;,退火温度为800℃,即材料主要以BaSiO3晶体存在时发光最好.即在544nm监测波长下,测得的最佳激发波长为紫外光248 nm,即在248 nm光激发下,材料发射强度高、单色性好的绿光.  相似文献   

5.
利用燃烧法于900℃制备了一种新型的MgMoO4∶Tb3绿色荧光粉.利用红外光谱(IR)、X射线衍射(XRD)研究了样品的物相和结构,利用漫反射光谱(DRS)、激发(PLE)和发射光谱(PL)研究了样品的发光性能.结果表明:所制备荧光粉为纯相MgMoO4;这种荧光粉可以被355 nm的紫外光有效激发并在545 nm处具有最强发射峰.同时研究了荧光粉的优化工艺条件,即Tb3+的掺杂浓度为0.20,合成温度为900℃,保温时间为5 min,n(CA)∶n(Mg+ Mo)为0.8∶1.CIE色度图分析表明,这种荧光粉的发光位于绿光区域,是一种适用于白光LED的潜在的绿色荧光粉.  相似文献   

6.
采用凝胶-燃烧法,在活性炭弱还原气氛下合成了新型荧光粉Sr3-xMgSi3O10: Tb3+x,通过热分析仪、红外光谱、X射线粉末衍射、X射线能量色散谱仪及荧光分光光度计等对产物的形成过程、结构、组成及发光性质进行了分析和表征.结果表明:干凝胶起火燃烧得前驱物,经900 ℃还原热处理即可得目标产物,其晶体结构与Sr2MgSi2O7相似,同属四方晶系.Sr3-xMgSi3O10: Tb3+x的激发光谱为一位于200~300 nm的宽带,主激发峰在249 nm左右;发射光谱由491 nm, 544 nm, 586 nm, 624 nm等一系列窄带发射峰组成,归属于Tb3+的5D4到7FJ (J=6,5,4,3)的跃迁.主发射峰位于544 nm,对应于Tb3+的5D4→7F5的能级跃迁,导致一种黄绿光发射.研究发现:还原温度及Tb3+掺杂浓度对发光强度有着重要的影响,并对浓度猝灭机制进行了探讨.  相似文献   

7.
LiCaPO_4∶Tb~(3+)材料的制备及其发光特性   总被引:1,自引:1,他引:0  
采用高温固相法合成了LiCaPO4∶Tb3+绿色荧光粉,并研究了材料的发光性质。LiCaPO4∶Tb3+材料呈多峰发射,发射峰位于437 nm、491 nm、545 nm、587 nm和625 nm,分别对应Tb3+的5D3→7F4和5D4→7FJ=6,5,4,3跃迁发射,主峰为545 nm;监测545 nm发射峰,所得激发光谱由4f75d1宽带吸收(200~330 nm)和4f-4f电子吸收(330~400nm)组成,主峰为380 nm。研究了Tb3+掺杂浓度,电荷补偿剂Li+、Na+、K+和Cl-及敏化剂Ce3+对LiCaPO4∶Tb3+材料发射强度的影响,发现调节激活剂浓度、添加电荷补偿剂或敏化剂均可提高材料的发射强度。  相似文献   

8.
采用简便的尿素辅助沉淀法将Gd2O3∶Tb3+成功包覆在二氧化硅微球表面合成了尺寸均匀的球形SiO2@Gd2O3∶Tb3核壳发光材料,解决了稀土发光材料普遍存在的形貌可控性差和颗粒尺寸不均一等问题.利用XRD、SEM、红外光谱和荧光光谱等表征测试了样品的形貌、结构和发光性能.SEM照片和尺寸分布图显示,SiO2@Gd2O3∶Tb3+粒子呈现均匀球形形貌,分散性良好,粒径约(608 +18) nm.XRD图谱分析表明,600℃煅烧后,壳层Gd(OH)3CO3完全转变为立方相Gd2O3,结晶性良好,无杂相生成.同时,结合红外光谱推测了SiO2@Gd2O3∶Tb3核壳微球的形成机理,并得出Gd2O3∶Tb3+壳层主要以Si-O-Gd键形式连接在二氧化硅微球表面.在240 nm紫外光激发下,SiO2@Gd2O3∶Tb3核壳微球呈现绿光发射,其中,位于540 nm处的主峰归属于Tb3+的5D4→7F5能级跃迁.不同Tb3掺杂浓度下的发射光谱表明,当Tb3+掺杂浓度为4mol;时,SiO2@Gd2O3∶Tb3+核壳微球的发射强度达到最大值,寿命为1.55 ms,色坐标位于绿色区域,展现了良好的绿光发光性能.  相似文献   

9.
孙智  谢建军  王宇  施鹰  雷芳 《人工晶体学报》2016,45(11):2561-2566
采用溶胶-凝胶法结合旋涂工艺在单晶硅(111)上制备了Tb3+离子不同掺杂浓度的硅酸镥光学薄膜(Tb∶Lu2SiO5),利用热重差热分析(TG-DSC)、X射线衍射(XRD)、傅里叶红外光谱仪(FTIR)、原子力显微镜(AFM)和紫外可见荧光光谱(PL)对Tb∶Lu2SiO5薄膜的不同温度热处理的结构演变和发光性能进行了表征.研究结果表明Tb∶Lu2SiO5光学薄膜表面均匀、平整、无裂纹,薄膜样品从800℃开始晶华,1100 ℃时晶化完全.Tb∶Lu2SiO5的发光性能表现为Tb3+离子的4f→5d和5D4(5D3)→7FJ(J =6,5,4,3)跃迁结果(监测波长分别为480~650 nm和350~470 nm),激发主峰位于~240 nm,发射光谱主峰为542 nm的绿光发射.研究表明Tb3掺杂浓度对Tb∶Lu2SiO5光学薄膜的发光强度会产生明显影响,掺杂15mol;的Tb3+时,Tb∶Lu2SiO5薄膜的发光强度最强.  相似文献   

10.
赵文武 《人工晶体学报》2016,45(11):2717-2721
采用高温固相反应法合成了Bi2-xZnB2O7∶xEu3+(x=0.06,0.08,0.10,0.12,0.15)红色发光材料,并对其制备工艺及发光特性进行了研究.利用XRD和SEM等对粉体进行了结构、纯度和形貌表征,同时讨论了烧结温度对其发光性能的影响得出最佳的烧结温度为680℃.在激发波长为465 nm的条件下,材料的发射峰主要位于582nm、596 nm、617 nm、656 nm和704 nm处,分别归属于Eu3+的5D0→7FJ(J=0,1,2,3,4)电子跃迁,其中以在617nm处的Eu3+的5D0→7F2跃迁产生的电偶极跃迁发射为最强.研究了Eu3+离子掺杂浓度对Bi2ZnB2O7∶Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为x=0.1.  相似文献   

11.
本文以Na2MoO4、Eu2O3 、Tb4O7和SrCl2为主要原料,通过共沉淀法制备了Sro.95 MoO4∶xEu3+∶(0.05-x)Tb3+荧光粉.通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱分析(PL)对样品进行了表征.XRD分析结果表明产物为纯白钨矿型纯四方相SrMoO4,5;的总掺杂量没有引起基质结构的变化.样品在800℃时,发光性能最好,在223 nm紫外光的激发下,Tb3+在486 nm、543 nm、583 nm、617 nm处有一组发射峰,分别对应于Tb3+的5 D4→+7F6、5D4→7F4、5D4→7F4、5D4→7F3的跃迁.Eu3+、Tb3+共掺杂时,发射光谱中Eu3+主发射峰位于611 nm附近,归属于5D0-7F2能级跃迁发射,而位于583 nm附近的弱发射峰归属于5D0-7 F1跃迁.  相似文献   

12.
李巍  陈文哲  郑婵 《人工晶体学报》2014,43(8):1938-1943
采用溶胶-凝胶法制备了Tb3+/Eu3+共掺ZnGa2O4微晶玻璃,研究了热处理温度对材料显微结构的影响以及不同稀土离子掺杂材料的发光性能.结果表明干凝胶样品在800~900℃温度热处理后可得到透明的含尖晶石结构ZnGaO4微晶玻璃,在1000℃热处理时由于SiO2非晶基体晶化析出三方Zn2SiO4与六方SiO2晶相导致样品失透.在微晶玻璃中具有ZnGa2O4纳米晶到Tb3+与Eu3+的能量传递.在900℃热处理Tb3+/Eu3+∶ZnGa2O4微晶玻璃样品中,Tb3+与Eu3+分别发射绿光和红光,并与ZnGa2O4纳米晶发射的蓝光组合成近白光发射.  相似文献   

13.
采用高温固相法合成了Ce3+,Tb3+激活的KNaCa2(PO4)2发光材料,并对其发光特性进行了研究.荧光光谱测试表明:Ce3+的加入显著增强了Tb3+的发射强度,观察到Ce3+对Tb3+的发光存在明显的敏化现象,且测得KNaCa2(PO4)2∶xCe3,yTb3+的最佳掺杂浓度为x=0.01,y=0.16.根据Forster-Dexter理论判定KNaCa2(PO4)2∶Ce3+,Tb3+中Ce3+对Tb3+的能量传递属于电偶极-电四极相互作用引起的共振能量传递.研究表明,KNaCa2(PO4)2∶Ce3+,Tb3+材料是一种优良的紫外-近紫外激发白光LED用高亮度绿色发光材料.  相似文献   

14.
以二氧化锰为微波吸收剂,采用微波辐射法成功合成了CaMoO4∶Eu3+红色发光材料.用X射线粉末衍射仪、扫描电子显微镜、荧光分光光度计分别对样品的物相结构、形貌和发光性质进行了分析和表征.结果表明:所合成的CaMoO4∶Eu3+晶体结构与CaMoO4相似,属四方晶系结构;样品大颗粒呈立方形,尺寸约4~8 μm,是由200 ~ 300nm的类球形颗粒组装而成.样品的激发光谱由位于200 ~ 350 nm的一个宽带和350 ~ 500 nm的一系列尖峰组成,最大激发峰位于305 nm处;发射光谱由位于550 ~750 nm的一系列尖峰组成,最强的发射峰位于617 nm处,归属于Eu3+的5D0→7F2跃迁.当反应时间为40 min,微波功率为中高火,电荷补偿剂Li+的掺杂量为8mol;时,样品的发光强度最大,约为未掺杂电荷补偿剂样品的4倍.  相似文献   

15.
采用传统的固相烧结法,制备了一系列的Sm3掺杂Na0.5Bi0.5TiO3无铅压电陶瓷(NBT∶ xSm3,0.005≤x≤0.04).利用X射线衍射仪和荧光分光光度计分别对NBT∶ xSm3+陶瓷样品的物相结构和光致发光性能以及热稳定性进行了分析.结果 表明,所有样品均为纯的三方钙钛矿结构.样品的激发光谱在480 nm有很强的激发峰,与蓝光LED芯片匹配.发射光谱包含位于563 nm、597 nm、645 nm、709 nm处的四个发射峰,分别归属于Sm3+的4G5/2→6HJ/2(J=5、7、9、11)跃迁,其中发射主峰位于597 nm,呈现橙红色发光.当Sm3+含量为0.02 mol时发光性能最佳.当温度范围在30 ~210℃之间时,NBT∶0.02Sm3陶瓷样品的发光性能具有良好的热稳定性  相似文献   

16.
采用溶胶凝胶燃烧法合成了Ca0.8Zn0.2TiO3∶Pr3+,Na+纳米红色长余辉发光材料,利用XRD、SEM、荧光分光光度计、热释光谱仪和照度计研究了烧结温度对样品物相、形貌以及发光性能的影响.结果表明:煅烧温度为600℃时生成了CaTiO3相,当烧结温度大于700℃时,出现了Zn2TiO4相;随煅烧温度的升高,样品的晶粒逐渐变大,平均晶粒尺寸均小于100nm;不同温度下样品的激发峰位于328nm,发射峰位于613 nm,归属于P,+的1D2-3 H4跃迁;当烧结温度为800℃时,样品的初始亮度和余辉时间最佳,其分别为2000 mcd/m2和10 min(≥1mcd/m2).  相似文献   

17.
采用溶胶-凝胶法制备Eu3+掺杂的Zn Al2O4/Si O2(ZAS)块状透明微晶玻璃发光材料。利用X射线衍射(XRD),透射电子显微镜(TEM)和荧光光谱(PL)等测试手段,系统研究了不同Eu3+掺杂浓度对ZAS发光性能的影响以及不同热处理温度对ZAS∶Eu3+发光性能的影响。结果表明,ZAS∶Eu3+在611 nm处具有强烈的红光发射峰,发射强度随着Eu3+掺杂浓度的增加,出现浓度淬灭效应,当掺杂量为20mol%时,发光强度最大;随着热处理温度的升高,存在高温淬灭效应,当热处理温度为900℃时,材料发光强度最优。CIE色度图分析表明,ZAS∶0.20Eu3+是一种潜在、优良的红光显示微晶玻璃材料。  相似文献   

18.
采用溶胶-凝胶燃烧法合成了不同Sr2+掺杂浓度的Ca0.5-xWO4∶Eu0.253+Li0.25+Srx2+(x=0,0.05,0.10,0.15,0.20,0.25)红色荧光粉,分别采用X射线衍射(XRD)、扫描电镜(SEM)和荧光分光光度计对荧光粉的结构、微观形貌和发光特性进行表征.结果表明,在500℃低温下煅烧4h可得到纯白钨矿结构的Ca05WO4∶Eu0.253+Li0.25+荧光粉,且荧光粉的颗粒随着煅烧温度的升高而增大,800℃合成的晶粒尺寸比较均匀,平均粒径在1~2 μm左右.Ca0.5-xWO4∶Eu0.253+Li0.25+Srx2+系列荧光粉均可以被393 nm和464 nm有效激发,其发射主峰值位于615 nm,属于Eu3的5D0→7F2跃迁.同时还系统研究了Sr2+的不同掺杂浓度对荧光粉发光性能的影响.Ca05-xWO4∶Eu0.253+Li0.25+Srx2+荧光粉中Sr2+的最佳掺杂浓度为x取0.15.  相似文献   

19.
金叶  张丁非 《人工晶体学报》2013,42(12):2532-2535
分别利用高温固相法、共沉淀法以及燃烧法合成了六方晶系纤锌矿结构的ZnO∶ Eu3+荧光粉,探讨了近紫外光激发下不同方法获得样品的发光性质.当监测Eu3+610 nm发射时,观测到200 ~ 250 nm和370 nm两处宽带,分别对应于Eu-O电荷迁移和ZnO.在近紫外光激发下,这些粉体材料都具有来自Eu3+的5D0-7Fj组态内跃迁线状发射以及与基质缺陷相关的宽带发射.比较不同的合成方法的样品发光,发现不同合成方法能量传递效率不同.固相法合成的材料ZnO∶ Eu3+中引入Li+有利于ZnO向稀土Eu3的能量传递的进行.由于在近紫外区的有效吸收,此材料在近紫外激发发光二极管的应用上良好前景.  相似文献   

20.
利用水热法成功合成了近红外量子剪裁荧光粉LuBO3∶15;Tb3+,x; Yb3+(x=0,1,2,4,8,12).通过X射线衍射(XRD)、光致发光谱(PL)、激发谱(PLE)和荧光寿命测试了合成物质的物相结构与发光性质.在286 nm(Tb3+∶7 F6→5D)紫外光激发下,观察到了Tb3∶5D4→7Fj(J=6,5,4,3)可见波段特征发射光和Yb3+:2F5/2→2F7/2的近红外光.研究了Yb3+浓度与激发发射光谱和荧光寿命之间的关系,表明Tb3+和Yb3+之间存在能量传递.当Tb3和Yb3+掺杂摩尔浓度分别为15;和2;时,近红外发射最强.计算得知,其最大下转换量子效率为160.74;.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号