首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat conduction solutions are presented for the case where the material obeys a non-Fourier conduction law. In contrast to the Fourier law which predicts an infinite speed of heat propagation, the non-Fourier theory implies that the speed of thermal signals are finite. Axisymmetric problems for regions interior and exterior to a circular cylinder are investigated by using methods of Laplace transformation and asymptotic analysis. Comparisons of the temperature profiles are made with Fourier theory for the case of step function temperature boundary conditions.  相似文献   

2.
将非傅立叶热传导模型(用于超薄热涂层)与傅立叶热传导模型(用于结构层)相结合 求解温度场,运用有限元法求解热涂层热应力和裂纹驱动力,并分析结构层材料热扩散系数 的变化对热涂层的热力学性能(温度场、应力场和断裂性能)的影响. 研究表明,结构层材 料性能变化对温度场的影响主要表现在热冲击后期,对热应力和裂纹尖端驱动力后期的变化 也有一定的影响.  相似文献   

3.
郭攀  武文华  吴志刚 《计算力学学报》2013,30(4):538-542,553
在热传导分析中,当热流与温度梯度存在时间延迟时,需采用非傅立叶热传导模型进行分析。生物组织具有较强的热松弛时间系数,承受激光、微波及烧烫等作用时,其呈现出较强的非傅立叶行为。本文对脉冲热源作用下生物组织的非傅立叶热传导进行研究,针对强脉冲引起的温度场在空间域的高梯度变化、波阵面的间断行为以及通用传统时域数值方法会带来虚假数值振荡的特点,提出采用所发展的时域间断Galerkin有限元法(DG-FEM )进行求解计算。对多种脉冲热源作用下的非傅立叶热传导过程进行数值模拟,通过考量强脉冲作用下温度场分布和热致生物组织损伤行为的影响,表明了本文所发展的DGFEM 能够有效、准确地描述温度场空间分布和热传导过程以及非傅立叶行为下的生物热损伤更为明显,在生物组织热行为分析中应该受到重视。  相似文献   

4.
短脉冲激光加热引起材料内部复杂的传热过程及热变形,现有的以Fourier定律或Cattaneo-Vernotte松弛方程结合弹性理论为框架建立起来热应力理论在刻画其热物理过程存在严重缺陷. 本文基于分数阶微积分理论, 以半空间为研究对象, 建立了分数阶Cattaneo热传导方程和相应的热应力方程, 给出了问题的初始条件和边界条件, 采用拉普拉斯变换方法, 给出了非高斯时间分布激光热源辐射下温度场和热应力场的解析解, 研究了短脉冲激光加热的温度场及热应力场的热物理行为. 数值计算中, 首先对理论解进行数值验证, 然后取分数阶变量$p=0.5$研究温度场和热应力场的变化特点及激光参数对温度和热应力的影响,最后数值计算分数阶参数对温度和热应力场的影响. 计算结果表明, 分数阶Cattaneo传热方程和热应力方程描述的温度和热应力任然具有波动特性,与经典的Fourier传热模型和标准的Cattaneo传热模型相比, 分数阶阶次越大, 热波波速越小, 热波波动性越明显; 反之, 则热波波速越大, 热扩散性越强.激光加热和冷却的速度越快, 温度上升和下降的速度越快, 压应力和拉应力交替变化越快, 温度变化幅值越小, 热应力幅值影响不明显.   相似文献   

5.
In this paper, the non-Fourier heat conduction in a solid sphere under arbitrary surface thermal disturbances is solved analytically. Four cases including sudden, simple harmonic periodic, triangular and pulse surface temperature changes are investigated step-by-step. The analytical solutions are obtained using the separation of variables method and Duhamel’s principle along with the Fourier series representation of an arbitrary periodic function and the Fourier integral representation of an arbitrary non-periodic function. Using these analytical solutions, the temperature profiles of the solid sphere are analyzed, and the differences in the temperature response between the “hyperbolic” and “parabolic” are discussed. These solutions can be applicable to all kinds of non-Fourier heat conduction analyses for arbitrary boundary conditions occurred in technology. And as application examples, particular attention is devoted to the cases of triangular surface temperature change and pulse surface temperature change. The examples presented in this paper can be used as benchmark problems for future numerical method validations.  相似文献   

6.
Analytical solution of the non-Fourier axisymmetric temperature field within a finite hollow cylinder exposed to a periodic boundary heat flux is investigated. The problem studied considering the Cattaneo–Vernotte (CV) constitutive heat flux relation. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The standard method of separation of variables is used for solving the problem with time-independent boundary conditions, and the Duhamel integral is used for applying the time dependency. The solution is applied for the special cases of harmonic uniform heat flux and an exponentially pulsed heat flux with Gaussian distribution in outer surface for modeling a laser pulse, and their respective non-Fourier thermal behavior is studied.  相似文献   

7.
The non-Fourier axisymmetric (2+1)-dimensional temperature field within a hollow sphere is analytically investigated by the solution of the well-known Cattaneo–Vernotte hyperbolic heat conduction equation. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The method of solution is the standard separation of variables method. General linear time-independent boundary conditions are considered. Ultimately, the presented solution is applied to a (1+1)—as well as a (2+1)—dimensional problem, and their respective non-Fourier thermal behavior is studied. The present solution can be reduced to special cases of interest by choosing appropriate boundary conditions parameters. Dedicated to Prof. Gholamali Atefi, with appreciation and admiration on the occasion of his 65th birthday.  相似文献   

8.
非傅立叶导热的最新研究进展   总被引:12,自引:0,他引:12  
蒋方明  刘登瀛 《力学进展》2002,32(1):128-140
对迄今为止有关非傅立叶导热的研究成果进行了全面的综述,其中包括作者在该领域的最新研究进展:空心球体介质双曲线非傅立叶导热模型的分析求解,室温条件下多孔材料内非傅立叶导热的实验结果及数值模拟,非傅立叶导热的“瞬时薄层”模型,非傅立叶导热和非费克质量传递的耦合分析,非傅立叶导热的分子动力学模拟等.文中还对下一步的研究工作进行了展望.   相似文献   

9.
吴华  邹绍华  徐成辉  尉亚军  邓子辰 《力学学报》2022,54(10):2796-2807
微纳科技的快速发展与超短脉冲激光技术的广泛运用, 对描述微纳尺度超快热冲击的广义热传导及其热弹耦合理论提出迫切需求. 基于拓展热力学原理, 本文建立了考虑热传导双相滞后效应和高阶热流率的广义热弹耦合理论. 类比于力学领域黏弹性本构关系的串联、并联模型, 并受Green-Naghdi (GN)广义热传导模型启发, 本文提出了热学“弹性”单元和“黏性”单元模型, 并采用串联、并联方法实现了Cattaneo-Vernotte (CV)、GN、双相滞后(DPL)和Moore-Gibson-Thompson (MGT) 热传导模型的重构. 理论推导进一步表明, 本文新建模型对应于热学Burgers模型, 并得到了新模型中各相位滞后中松弛时间之间的比例关系. 运用拉普拉斯变换方法, 研究了一维结构受边界热冲击和移动热源作用下的瞬态响应, 计算结果表明: 新模型克服了热波速度无限大的悖论; 仅有边界热冲击载荷时, 新模型得到的响应结果均较大, 响应范围最小; 相比于无热源作用情形, 受移动热源作用时, 新模型会产生更大的峰值响应. 新模型与经典弹性理论耦合构建了广义热弹性理论, 运用该理论, 可以清晰观察到在热波和弹性波波前的应力突变. 理论方面, 本文推动了拓展热力学与连续介质力学的结合, 对于远离平衡态极端力学基础理论问题的研究具有启发意义; 应用方面, 本文研究结果可为激光等移动热源作用下材料的瞬态响应分析提供理论基础和数值方法.   相似文献   

10.
The design of thermoelastic damping (TED) affected by the phase-lagging non-Fourier heat conduction effects becomes significant but challenging for enlarging the quality factor of widely-used microresonators operating in extreme situations, including ultra-high excitation frequency and ultra-low working temperature. However, there does not exist a rational method for designing the TED in the framework of non-Fourier heat conduction law. This work, therefore, proposes a design framework to achieve low thermoelastic dissipation of microresonators governed by the phase-lagging heat conduction law. The equation of motion and the heat conduction equation for phase-lagging TED microresonators are derived first, and then the non-Fourier TED design problem is proposed. A topology optimization-based rational design method is used to resolve the design problem. What is more, a two-dimensional (2D) plain-strain-based finite element method (FEM) is developed as a solver for the topology optimization process. Based on the suggested rational design technique, numerical instances with various phase lags are investigated. The results show that the proposed design method can remarkably reduce the dissipation of microresonators by tailoring their substructures.  相似文献   

11.
The hyperbolic heat conduction process in a hollow sphere with its two boundary surfaces subject to sudden temperature changes is solved analytically by means of integration transformation. An algebraic analytical expression of the temperature profile is obtained. Accordingly, the non-Fourier hyperbolic heat propagation in hollow spherical medium is analyzed and possible hyperbolic anomalies are discussed.  相似文献   

12.
王熙 《力学学报》1993,25(6):726-731
本文提出一种简便的解析方法求解实心球体在热冲击载荷作用下的动应力响应。从热动应力的解析表达式和计算结果可以发现圆心处的动应力具有动应力集中现象,并且随着应力波在球体外边界的不断反射而产生周期性振荡。  相似文献   

13.
Analytical solution of the non-Fourier Axisymmetric temperature field within a finite hollow cylinder is investigated considering the Cattaneo-Vernotte constitutive heat flux relation. The solution is found for the most general linear time-independent boundary conditions. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The standard method of separation of variables is used. The present solution can be reduced to special problems of interest by choosing appropriate boundary condition parameters. The solution is applied for two special cases including constant heat flux and the Gaussian distribution heating of a cylinder, and their respective non-Fourier thermal behavior is studied.  相似文献   

14.
A finite element discretized symplectic method is introduced to find the thermal stress intensity factors (TSIFs) under steady-state thermal loading by symplectic expansion. The cracked body is modeled by the conventional finite elements and divided into two regions: near and far fields. In the near field, Hamiltonian systems are established for the heat conduction and thermoelasticity problems respectively. Closed form temperature and displacement functions are expressed by symplectic eigen-solutions in polar coordinates. Combined with the analytic symplectic series and the classical finite elements for arbitrary boundary conditions, the main unknowns are no longer the nodal temperature and displacements but are the coefficients of the symplectic series after matrix transformation. The TSIFs, temperatures, displacements and stresses at the singular region are obtained simultaneously without any post-processing. A number of numerical examples as well as convergence studies are given and are found to be in good agreement with the existing solutions.  相似文献   

15.
基于带有两个热松弛时间的G-L广义热弹性理论, 利用有限元方法研究了零阻抗理想界面层合板在瞬态热冲击诱导的位移、应力和温度等通过界面时的热弹性行为. 通过比较不同层中材料的比热容、热导系数、热松弛时间和密度等对界面处的位移、应力和温度的影响, 研究了不同材料参数对复合材料热力学行为影响, 发现不同材料参数将导致热穿过界面时界面处温度、位移和应力发生突变, 研究结果可以为由热引起的层合板挠曲变形提供理论依据.   相似文献   

16.
Arational asymptotic theory is proposed,which describes the turbulent dynamic and thermal boundary layer on a flat plate under zero pressure gradient. The fact that the flow depends on a finite number of governing parameters makes it possible to formulate algebraic closure conditions relating the turbulent shear stress and heat flux with the gradients of the averaged velocity and temperature. As a result of constructing an exact asymptotic solution of the boundary layer equations, the known laws of the wall for velocity and temperature, the velocity and temperature defect laws, and the expressions for the skin friction coefficient, Stanton number, and Reynolds analogy factor are obtained. The latter makes it possible to give two new formulations of the temperature defect law, one of which is identical to the velocity defect law and contains neither the Stanton number nor the turbulent Prandtl number, and the second formulation does not contain the skin friction coefficient. The heat transfer law is first obtained in the form of a universal functional relationship between three parameters: the Stanton number, the Reynolds number, and the molecular Prandtl number. The conclusions of the theory agree well with the known experimental data.  相似文献   

17.
针对核电站核泵主轴、管道系统等高温环境下工作的部件受冷却水热冲击而容易出现裂纹的问题,提出通过表面微结构设计,利用水低热扩散率的特性,在被热冲击表面产生隔热水膜,从而降低瞬态热冲击过程中表层结构的热应力,防止结构热疲劳损伤. 针对这一设想,采用有限元与无限元相结合的办法,解决热应力分析的多尺度问题. 利用COMSOL多场耦合分析软件,对瞬态热冲击条件下,表面微结构的温度场与热应力分布进行分析,研究了冲击时间、微结构几何参数和流体黏性底层厚度等对微结构表面热冲击防护能力的影响. 研究发现,表面微柱或微管结构对降低短时间冷水冲击产生的表面热应力具有显著效果,同时在微结构与基底之间存在最优过渡曲面使表面热应力最小化.  相似文献   

18.
非傅里叶热传导研究进展   总被引:20,自引:1,他引:19  
张浙  刘登瀛 《力学进展》2000,30(3):446-456
傅里叶定律能够精确描述大多数的热传导问题,但对于超短脉冲激光加热等热作用的周期时间极短的超急速、超常规热传导等问题,非傅里叶效应将会显得至关重要.对非傅里叶热传导的实质、模型、模型的求解及应用与实验等几个方面的研究进展做了一个较详尽的概括与评述,并指出了今后需要着重研究的方向.   相似文献   

19.
In this work, the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction. By utilizing the variational principle of virtual work, the governing equations and the associated standard boundary conditions are systematically extracted, and the thermal effect, equivalent to the induced thermal load, is explicitly assessed by using the nonlocal heat conduction law. The ...  相似文献   

20.
A plane problem for a thermally insulated interface crack with a contact zone in an isotropic bimaterial under tension–shear mechanical loading and a temperature flux is considered. The expressions for the stresses and the electrical flux as well as for the derivatives of the displacement and the temperature jumps at the material interfaces via sectionally holomorphic mechanical and thermal potential functions are given. After the solution of the thermal problem the inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved exactly. The stresses at the interface and the stress intensity factors at the singular points are presented in a clear analytical form. Special attention is devoted to the case of a small contact zone when the stress intensity factors can be presented in form similar to the associated presentation for an “open” crack model. A transcendental equation and an asymptotic analytic formula for the determination of the real contact zone length are derived. It is shown that for a certain bimaterial this length as well as the correspondent stress intensity factor are defined by a single parameter which depends on the normal-shear loading and the heat flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号