首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are investigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simulation technique in conjunction with the Latin hypercube sampling method was adopted to study the probabilistic springback. Finite element method based on implicit/explicit algorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler algorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reliability functions based on geometry compensations.  相似文献   

2.
金属板料拉延二次成形的有限元法模拟   总被引:4,自引:0,他引:4  
建立了二次拉延成形加工的有限元分析计算模型;采用一次成形-回弹计算-二次成形的连续计算过程模拟了实际加工过程;有限元计算采用动力显式计算程序MSC/DYTRAN;用主从面(master surface-slave surface)模型定义板料和模具的接触,摩擦力用库仑定律计算;利用动力松弛法对成形过程中的回弹进行了计算。模拟结果和实际零件比较,证明模型合理,自满稳定,结果可靠,具有良好的应用价值。  相似文献   

3.
冲压过程模拟的接触与摩擦关系数值方法   总被引:6,自引:1,他引:6  
文中简介采用非经典算法求解板件冲压过程数值模拟的基本思想;就与模具间接触与摩擦关系的处理作重点论述,并给出算例。  相似文献   

4.
基于弹塑性大变形板材冲压成形增量有限元法,采用线性弹簧单元提出一种空间三维板材冲压成形等效界面摩擦力的处理方法.这种方法的优点是可以反映界面摩擦力的同步、被动产生效果,同时它还可以保证约束后刚度矩阵的对称性.将提出的摩擦约束处理算法引入自主开发的板材成形模拟软件FASTAMP,计算了汽车油底壳的成形过程,计算结果的厚度分布与实际冲压件吻合比较好,验证了等效界面摩擦力约束处理方法的有效性.  相似文献   

5.
The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the visco- elastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm.  相似文献   

6.
Discrete meshes cause stepwise propagation of the contact nodes of a sheet despite the fact that the contact region in the actual forming process is altered very smoothly. This can cause problems of convergence and accuracy in contact-sensitive processes, such as a bending process. In this study, a scheme for a continuous contact treatment is proposed in order to consider the more realistic behavior of the contact phenomena during the forming process. For verification of the proposed method, the contact pressures and forming load are evaluated during the compression forming of a tube. The analysis of a hemispherical dome formed without a blank holder is also presented in order to investigate the effects of the proposed algorithm. The results show that the precise deformation mode is predicted by the utilization of the proposed method.  相似文献   

7.
Some metal sheet forming processes may induce an amount of plastic shear over the sheet thickness. This paper investigates how formability of anisotropic sheet metal is affected by such through-thickness shear (TTS). The Marciniak-Kuczynski (MK) model framework, a commonly used analytical tool to predict the limit of sheet formability due to the onset of localized necking, is extended in this paper in order to explicitly account for TTS in anisotropic metal sheets. It is a continuation of previous work by the present authors (Eyckens et al., 2009), in which TTS is incorporated for isotropic sheet. This is achieved by the introduction of additional force equilibrium and geometric compatibility equations that govern the connection between matrix and groove in the MK model. Furthermore, in order to integrate plastic anisotropy, a material reference frame available in recent literature is incorporated, as well as a particular model for anisotropic yielding that relies on virtual testing of anisotropic properties (Facet plastic potential), since out-of-plane anisotropy related to TTS cannot be measured experimentally.It is found that formability may be increased by TTS, depending on the direction onto which it is imposed by the forming process. TTS is thus a relevant aspect of the formability in, for instance, sheet forming processes in which sliding contact with friction between sheets and forming tools occur.  相似文献   

8.
板材冲压翻边的解析理论模型   总被引:9,自引:1,他引:8  
胡平  李运兴  李大永 《力学学报》2001,33(6):803-811
基于全量塑性理论及膜应变假设,给出两种新的冲压板材内曲拉伸/外曲收缩翻边坯料尺寸预示解析数学模型。引入板材冲压成形性分析软件KMAS系统中,对铁路客车牵引架实际冲压件的翻边成形坯料尺寸进行了预示,并与其它解析模型的预示结果以及实验及实测数据进行了对比。讨论了板材的面内各向异性对翻边高度的影响。  相似文献   

9.
拉深用润滑剂的摩擦系数和压边力的关系研究   总被引:11,自引:0,他引:11  
采用拉深用润滑剂性能评定模拟试验机研究不同种类的润润剂在不同压边力值条件下,拉深过程中的摩擦系数与压边力之间的关系。结果表明:试验用的油基润滑剂主 大拉深性能越好,受压边力的影响也越小,水基润滑剂受压边力的影响明显大于油基润滑剂,并且存在最佳压边力。  相似文献   

10.
在激光冲击载荷作用下, 薄板变形速度快, 诱导产生的应力波的传播过程较为复杂. 传统的测量工具难以对薄板变形过程中的动态响应进行有效的测量. 本文采用理论与实验相结合的方法, 构建了薄板在激光冲击下二维轴对称平面模型, 建立其拉格朗日运动方程, 利用有限差分法求其显式解, 分析薄板在激光冲击载荷作用下薄板的变形过程和应力波的传播过程, 并研究不同工艺参数对薄板动态响应特性的影响. 结果表明, 薄板变形初期的速度为振荡式增加, 在快速的拉胀式变形过程中会出现明显的回弹现象, 在光斑边界处产生向内和向外传播的应力波, 载荷的压力-空间分布以及边界约束条件也对薄板的动态响应结果有显著的影响. 激光冲击实验得到的结果与数值结果和预测结果基本吻合. 研究方法与所得结论可为薄板激光冲击成形过程中的参数优化提供参考.   相似文献   

11.
板材多点成形过程的有限元分析   总被引:8,自引:0,他引:8  
多点成形过程采用静力隐式格式进行数值模拟是比较合适的。本文建立了用于多点成形过程分析的静力隐式弹塑性大变形有限元方法 ,给出了对稳定迭代收敛过程效果较好的板壳有限单元模型、处理多点不连续接触边界的接触单元方法以及增量变形过程中应力及塑性应变计算的多步回映计算方法。基于这些方法编制了计算软件 ,应用该软件进行了矩形板的液压胀形过程及球形模具拉伸成形过程的有限元分析 ,数值计算结果与典型的实验结果及计算结果吻合很好。最后给出了球形、圆柱形目标形状的实际多点成形过程的数值模拟结果。  相似文献   

12.
In this paper, the proposed is a quasi-flow constitutive model with strain-rate sensitivity for elastic plastic large deformation. The model is based on the Quasi-flow Corner theory, and is suitable for the sheet metal forming process simulation with a variable punch machine velocity. Uniaxial tensile tests and deep-drawing tests of a circular blank with square punch are carried out and numerically simulated. The consistency between the experimental and the numerically simulated results shows the validity of the present new constitutive model. The project supported by the Scientific Foundation of National Outstanding Youth of China (10125208), the National Natural Science Foundation of China (19832020), and the National Education Committee of China  相似文献   

13.
板材成形的计算机辅助工程系统   总被引:19,自引:1,他引:18  
霍同如  徐秉业 《力学进展》1996,26(4):548-557
板材成形同时包含大变形、(粘)塑性、接触、摩擦等多种非线性因素耦合,刊用有限元法在计算机上模拟出板材从坯件到成品的全过程并加以图形显示,进而研究影响成形的各种因素,可以为板材成形的设计和生产提供可靠依据.本文介绍板材成形的计算机辅助工程系统(简称CAE系统)的组成,并对成形数值模拟中的有限元格式、接触与摩擦问题、拉伸筋的考虑方法以及回弹的计算方法做了简单介绍.   相似文献   

14.
Various sources of uncertainty can arise in metal forming processes, or their numerical simulation, or both, such as uncertainty in material behavior, process conditions, and geometry. Methods from the domain of uncertainty quantification can help assess the impact of such uncertainty on metal forming processes and their numerical simulation, and they can thus help improve robustness and predictive accuracy. In this paper, we compare stochastic methods and interval methods, two classes of methods receiving broad attention in the domain of uncertainty quantification, through their application to a numerical simulation of a sheet metal forming process.  相似文献   

15.
A mathematical model considering sliding friction between the tube and die is proposed to explore the plastic deformation behavior of the tubes during a hydraulic expansion process in a square cross-sectional die. This model is used to predict the forming pressure needed to hydroform a circular tube into a square cross-section and the thickness distribution of the product. FE simulations on tube expansion have also been carried out to compare the analytical results with those by the proposed mathematical model. The effects of the friction coefficient between the die and tube, upon the forming pressures needed and thickness distributions after the expansion process are discussed. Experiments of tube expansion in a square die using a self-designed apparatus are also conducted. The analytical results of forming pressure and thickness distributions of the formed parts are compared with the experimental measurements to verify the validity of this newly proposed model.  相似文献   

16.
The changes in internal diameter that occur when a hollow disk, or ring, is plastically deformed by axial compression have been proposed as a method for measuring interface friction during metal forming. The adoption of this test method has been delayed because the three-dimensional strains in such rings are not known. This paper describes how an experimental method using photoplastic simulation was used to obtain the three-dimensional strains for a particular ring geometry. It presents proot of highly nonuniform strains and also shows that the division between flow inward and flow outward occurs at different radii through the thickness of the ring.  相似文献   

17.
A rate-dependent quasi-flow plastic constitutive model with punch-speed sensitivity is proposed for the large-deformation sheet metal forming process, which is based on the quasi-flow corner theory and UL formulation for the virtual work-rate equation. Three kinds of constitutive theories with strain rate dependence, classical flow theory, deformation theory with rate form obeying non-orthogonality rule, and the present quasi-flow corner theory, are introduced into the UL finite element formulation to simulate the deformation localization processes of plane strain tension in order to investigate effects of strain rate sensitivity on the localizing deformation characters. Furthermore, three kinds of typical forming processes sheet metals, one being an uniaxial stretching and another being a square cup drawing with circular blank, and third being a deep drawing of an oil pan, actual industrial forming part, are also numerically simulated by the present model and compared with experimental results. Good agreement between numerical simulation and experimental ones exhibits the validity of the quasi-flow corner theory.  相似文献   

18.
In this paper, the large deformation frictional contact of powder forming process is modeled based on a new computational algorithm by imposing the contact constraints and modifying the contact properties of frictional slip. A simple and efficient numerical algorithm is presented for imposing the contact constraints and frictional contact properties based on the node-to-surface contact technique to simulate the large deformation contact problem in the compaction process of powder. The Coulomb friction law is used to simulate the friction between the rigid punch and the workpiece by the use of penalty approach. A double-surface cap plasticity model is employed together with the nonlinear contact friction algorithm within the framework of large FE deformation in order to predict the non-uniform relative density distribution during large deformation of powder die-pressing. Finally, the numerical schemes are examined for accuracy and efficiency in modeling of a set of powder components.  相似文献   

19.
The interpretation of sheet forming simulations relies on failure criteria to define the limits of metal deformation. The common requirements for these criteria across a broad range of application areas have not yet been satisfied or fully identified, and a single criterion to satisfy all needs has not been developed. Areas where existing criteria appear to be lacking are in the comprehension of the effects of non-proportional loading, general non-planar and triaxial stress loading, and process and material mechanisms that differentiate between necking and fracture. This study was mainly motivated to provide an efficient method for the analysis of necking and fracture limits for sheet metals. In this paper, a model for the necking limit is combined with a model for the fracture limit in the principal stress space by employing a stress-based forming limit curve (FLC) and the maximum shear stress (MSS) criterion. A new metal failure criterion for in-plane isotropic metals is described, based on and validated by a set of critical experiments. This criterion also takes into consideration of the stress distribution through the thickness of the sheet metal to identify the mode of failure, including localized necking prior to fracture, surface cracking, and through-thickness fracture, with or without a preceding neck. The fracture model is also applied to the openability of a food can for AA 5182. The predicted results show very good agreement with the experimentally observed data.  相似文献   

20.
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号