首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.  相似文献   

2.
Stereoscopic particle-image velocimetry (SPIV) measurements are conducted in a Low-speed Large-scale Axial Compressor. During the experiment the two CCD cameras are placed at the different sides of the laser light sheet and it is proved that this configuration is more suitable for the investigation in multi-stage turbomachines. The measured results, including the overall performances of many typical flow structures near the rotor tip region and the phase locked unsteady flows inside the stator passage at both the design and near-stall conditions, are introduced. Some new features of the complicated flow structures, such as the breakdown of the tip leakage vortex, the formation of the compound corner vortex at the rotor suction tip corner, the interactions between the hub stall and the tip separation and the rotor wakes, and the evolutions of the tip corner anti-rotating streamwise vortices inside the stator passage, are revealed.  相似文献   

3.
The flow in the inter-blade channels of a bulb turbine was measured using endoscopic cameras integrated to a stereoscopic particle image velocimetry (S-PIV) system. This paper presents results from the measurement campaign and also provides some key conclusions based on the dataset. The technical aspect of the measurement configuration is addressed. The main focus is on the novelties and challenges brought by the use of endoscopic cameras to achieve S-PIV measurements between the runner blades. For the first time in hydraulic rotating machinery, velocity measurements covered 62 % of a rotor inter-blade flow. After outlining the techniques used, comparison with laser Doppler velocimetry measurements allows assessing the intrusiveness of the endoscopes. Then, some velocity field analyses are shown. First, the rotor–stator interaction is outlined as the influence of the guide vane wakes on the runner flow. The size, localization, strength and dissipation of those structures are inferred from the information coming from measurements. Finally, the PIV data allow the identification of a vortex located near the suction side of the blades and originating from the corner between the leading edge and the hub when operating the bulb turbine at part-load.  相似文献   

4.
A numerical study of the unsteady phenomena resulting of periodic passing wakes is presented. An unsteady passing wake boundary condition is implemented in a three-dimensional Navier–Stokes code. Unsteady computations are performed to evaluate the capability of the code to simulate the rotor–stator interaction flow. The analysis of the flow structures shows the vortical disturbances and the migration of the incoming wakes through the blade passage. This physical analysis allows to separate the main origins of the losses.  相似文献   

5.
The relative motion of rotor and stator blade rows in a turbomachine generates periodically unsteady flow on the blades due to travelling wake perturbations. To better understand the attendant wake–boundary-layer interaction a calculation procedure was developed to model the behaviour of this complex unsteady flow. Due to nonlinear interactions with the boundary layer, the travelling discrete frequency wakes were found to decrease the velocity profile shape factor. For the range of reduced frequencies examined (=0.33–9.33) the skin-friction coefficient was found to be frequency dependent. The calculated results for both steady and unsteady velocity profiles, and for skin friction compared well with experimental data. Although the agreement between measured and calculated velocity phase shift was poor, in both experimental and model results the negative phase shift throughout the boundary layer due to the travelling-wave fluctuations has been captured.  相似文献   

6.
7.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

8.
An experimental investigation of unsteady-wake/boundary-layer interaction, similar to that occurring in turbomachinery, has been conducted in a specially modified wind tunnel. Unsteadiness in a turbomachine is periodic in nature, due to the relative motion of rotor and stator blades, resulting in travelling-wave disturbances that affect the blade boundary layers. In the experimental rig, travelling-wave disturbances were generated by a moving airfoil apparatus installed upstream of a flat plate to provide a two-dimensional model of a turbomachine stage. The boundary layer on the flat plate was tripped near the leading edge to generate a turbulent flow prior to interaction with the wakes, and measurements of velocity throughout the boundary layer were taken with a hot-wire probe. The Reynolds number, based on distance along the plate, ranged from 0.144×105 to 1.44×105, and all data were reduced through a process of ensemble averaging. Due to the nonlinear interactions with the boundary layer, the travelling discrete frequency wakes were found to decrease the shape factor of the velocity profile and to increase the level of turbulent fluctuations. Unlike the phase advance found with stationary-wave external disturbances, velocity profiles subject to the travelling wake fluctuations exhibited increasingly negative phase shifts from the free-stream towards the wall.  相似文献   

9.
Large-Eddy Simulation is utilized to investigate the rotor–stator interaction within a centrifugal pump. Comparisons are presented across diffuser geometries for two values of the flow-rate. Decreasing the incidence angle on the diffuser blades at off-design is found the main source of higher pressure rise and lower overall values of turbulent kinetic energy within the pump, resulting in efficiency improvement. The impact on the second-order statistics of the flow is especially significant. However, the values of the pressure fluctuations acting on the diffuser blades, defining fatigue loads on them and cavitation phenomena, are found especially affected by the rotor–stator clearance. Results show that at reduced flow-rates the rotation of the diffuser blades around their mid camber is a better option than rotating them around their leading edge. They also suggest that at larger flow-rates the increased incidence on the diffuser blades causes pressure side separation and large shear layers populating the diffuser channels, not affecting substantially the region of interface between impeller and diffuser, but having detrimental effects on the performance of the latter. The rotation of the diffuser blades around their leading edge should be preferred when the pump operates at flow-rates larger than the design one, avoiding decreasing the rotor–stator gap, thus resulting in smoother rotor–stator interaction and lower pressure fluctuations.  相似文献   

10.
The transformation of the structure of the density, optical refractive index, temperature, and salinity fields in the regimes of formation and disintegration of convection flows under uniform sidewall cooling of a continuously stratified fluid is investigated using optical and probe techniques. Although the height of the individual cells is almost constant in the various stages of the process, the field patterns change significantly. In the formation stage the contributions of the temperature and salinity to the density distribution compensate each other, the density profile is smooth and the optical refractive index profile is stepped. In the disintegration stage the density profile also becomes stepped. At large times a new convection flow is formed on the external boundaries of the cells due to the temperature difference between the cooled inner fluid and the warmer outer (undisturbed) fluid, and this flow maintains the structure contrast as the motion degenerates.  相似文献   

11.
The flow field around a helicopter is characterised by its inherent complexity including effects of fluid?Cstructure interference, shock?Cboundary layer interaction, and dynamic stall. Since the advancement of computational fluid dynamics and computing capabilities has led to an increasing demand for experimental validation data, a comprehensive wind tunnel test campaign of a fully equipped and motorised generic medium transport helicopter was conducted in the framework of the GOAHEAD project. Different model configurations (with or without main/tail rotor blades) and several flight conditions were investigated. In this paper, the results of the three-component velocity field measurements around the model are surveyed. The effect of the interaction between the main rotor wake and the fuselage for cruise/tail shake flight conditions was analysed based on the flow characteristics downstream from the rotor hub and the rear fuselage hatch. The results indicated a sensible increment of the intensity of the vortex shedding from the lower part of the fuselage and a strong interaction between the blade vortex filaments and the wakes shed by the rotor hub and by the engine exhaust areas. The pitch-up phenomenon was addressed, detecting the blade tip vortices impacting on the horizontal tail plane. For high-speed forward flight, the shock wave formation on the advancing blade was detected, measuring the location on the blade chord and the intensity. Furthermore, dynamic stall on the retreating main rotor blade in high-speed forward flight was observed at r/R?=?0.5 and 0.6. The analysis of the substructures forming the dynamic stall vortex revealed an unexpected spatial concentration suggesting a rotational stabilisation of large-scale structures on the blade.  相似文献   

12.
研究了Kirchhoff积分面是否有盖有底,以及是否计及旋翼网格上的流场值,这两个因素对噪声预测结果的影响.发展了一种基于重叠网格的计算悬停旋翼远场噪声的数值方法.数值计算过程分为流场模拟和声场模拟两部分.悬停旋翼流场的数值模拟是在两个相互重叠的网格上进行的:在高质量的旋翼网格上求解Navier-Stokes方程,用于模拟旋翼附近的粘性流动和近场尾涡的捕捉;在远离粘性区域处布置符合悬停流场物理特征的圆柱形背景网格,控制方程为Euler方程,用于远场尾涡的捕捉.计算得到的流场信息插值到用于声场计算的Kirchhoff积分面上.观测点处的噪声可以认为是由这个完全包含桨叶的Kirchhoff积分面上的面元(声源)发声得到.远场声波的传播由Kirchhoff积分公式描述.计算结果表明:采用有盖有底的Kirchhoff积分面并且同时计及旋翼网格流场值时,计算得到的HSI噪声与实验值吻合最好.  相似文献   

13.
The main source of flow unsteadiness in turbomachinery is the aerodynamical interaction of the rotor and stator blade rows. The blades and vanes, moving relatively to each other, interact because of the viscous wakes and the potential effects of the blades. In addition, the wakes and potential effects superimpose with other flow patterns, for instance the tip clearance vortices and other secondary flow phenomena. Furthermore in transonic compressors the interaction of wakes and shocks plays an important role. As a result, the real flow field is highly periodically unsteady and very complex, especially in multistage turbomachinery. Although this fact has received increasing attention within recent years, blade row interactions effects are not yet typically addressed in current design systems of turbomachinery. Actually, there is a requirement of the ability of modern design methods to predict unsteady flow features. With increasing aerodynamic loading of the blades and higher Mach numbers the consideration of rotor-stator-interactions gains in importance. It is therefore one of the challenges of the present and future design of compressors and turbines to include beneficial unsteady effects to improve the engine parameters. This requires a detailed physical understanding of the unsteady flow field and the resulting effects on the performance and flow stability. In 2000 the joint research program “Periodical Unsteady Flow in Turbomachinery” was initiated. Partners of this project are five research groups from four german universities: Technische Universität Berlin (Prof. Hourmouziadis), Universität der Bundeswehr München (Prof. Fottner, Prof. Pfitzner), Universität Karlsruhe: Institut für Thermische Strömungsmaschinen (Prof. Wittig, Dr. Dullenkopf), Institut für Hydromechanik (Prof. Rodi), Technische Universität Dresden (Prof. Vogeler), and a research group from the: German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt), (Prof. Weyer, Prof. Mönig). This 5-year program was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) and coordinated by Professor Hourmouziadis (Technische Universität Berlin). The aim of this joint project is to contribute to an improved physical understanding of the periodical unsteady flow phenomena and to provide more reliable prediction methods of these complex flow conditions in turbomachinery. Selected aspects of flow unsteadiness in turbomachines were investigated with complementing experimental and numerical investigations. Different flow conditions of different complexity were investigated in detail. After a 3-year period of the project, first results of the research group are published in a special issue of the Journal of Flow, Turbulence and Combustion (Flow Turbulence Combust 69, 2002). After the end of the joint project, in the present paper selected results of each research group, which addresses different aspects of periodical unsteady flow in turbomachinery, are discussed. However, it is not the intention of the present paper to give a general survey on this field of research. The following topics are selected to provide insight into the work of the joint research group: (1) Experimental Investigation of Rotor-Stator-Interactions in an Axial Compressor, (2) Influence Of Periodically Unsteady Flow On The Boundary Layer Development Of A Highly Loaded Linear Turbine- And Compressor Cascade, (3) Flow Conditions on a Flat Plate under Oscillating Inlet Conditions, (4) Simultaneous Measurements of Flow and Heat Transfer in a Periodically Unsteady Flow, (5) Turbulence- and Transition Modelling for Unsteady RANS simulations, and (6) Direct Numerical Simulations of Transitional Flow in Turbine-Related Geometries.  相似文献   

14.
This contribution is aimed at summarizing the effort taken to apply stereoscopic PIV (SPIV) measurements in the tip clearance of a transonic compressor rotor equipped with a casing treatment. A light sheet probe was placed downstream of the stator and aligned to pass the light sheet through a stator passage into the blade tip clearance of the rotor. A setup with three cameras has been used in order to record the entire 2C velocity field and the smaller area of 3C field of view at the same time instance for comparison with earlier 2C PIV results. A homogeneous seeding distribution was achieved by means of a smoke generator. The main emphasis of the SPIV measurement was to establish a data set with high spatial resolution close to the compressor casing, where the aerodynamic effects of a CT are known to be strong. The paper will discuss some major aspects of the utilized PIV data processing and point out a variety of frequently underestimated error sources that influence the overall quality of the recovered data in spite of the fact that the individual PIV recordings seemed to be of very good quality. Thus, the authors will not focus on the PIV results and related interpretation of the flow field, but on the optimization and procedures applied during setup of the experiment and data processing, respectively.  相似文献   

15.
A technique is presented for measuring velocity, density and scalar transport in a buoyant rotating gravity current. Existing methods for combined PIV and PLIF are modified for use in a stratified flow on a rotating table and strategies for beam alignment, index of refraction matching, surface tension matching and photobleaching correction are presented. In addition, the PIV–PLIF technique is modified to resolve the velocity and density fields in a cross-section of the current perpendicular to the mean flow direction, allowing the transport in this direction to be computed. This is done by rotating the plane of the laser sheet 15° to the horizontal. This sheet angle is high enough that the entire cross-section of the current is contained in the viewing area, but low enough that horizontal PIV particle displacements are resolved. The technique is used successfully to measure the transport of buoyant fluid in a non-rotating channel to within 5% of the prescribed flow. Results from a rotating gravity current experiment are then presented and compared with previous experiments.  相似文献   

16.
This paper discusses the application of an advanced turbomachinery forced prediction model to two representative turbomachinery cases: an HP turbine and a rig fan. The approach is based on an integrated nonlinear multi-passage analysis that includes both the stator and the rotor blade-rows. The numerical model has advanced features such as nonlinear friction damping for turbine blades, tip gap flows and blade vibratory motion. A series of inviscid and viscous computations were performed for an HP turbine with 36 stator and 92 rotor blades. The peak-to-peak maximum displacements were predicted with and without root friction dampers and the findings were compared with available experimental data. Good agreement was observed in most cases. It was found that most of the unsteady forcing was due to the potential effects. In a second phase of the turbine work, the response to low engine-order excitation was predicted using a multi-row whole-annulus model. The stator assembly was assumed to have blades with varying throat widths and the magnitude of the unsteady aerodynamic forcing was found to increase with increasing scatter in throat width variation. A second forced response study was conducted for a rig fan with 15 variable inlet guide vanes (VIGVs) and 20 rotor blades. For a 30° VIGV opening, a good match was observed between the predicted and measured wake profiles. Similarly, the measured and predicted rotor blade vibration levels were also found to be in good agreement. It is concluded that the proposed methodology can be applied, with reasonable confidence, to the study of industrial cases.  相似文献   

17.
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.  相似文献   

18.
Experiments were performed in a wind tunnel to study the flow around an axisymmetric body driven by a marine propeller. Measurements were made in the boundary layer and wake of the bare body, on the body with only a dummy hub rotating, and finally, with the propeller in operation. Part 1 of this paper described the experimental arrangement and instrumentation. Also, circumferentially-averaged results were presented to clarify certain aspects of the overall flow. In the present part, measurements made with a triplesensor hotwire are analyzed using phase-averaging techniques to reconstruct the instantaneous velocity and Reynolds-stress fields downstream of the propeller and show the evolution of the wakes of individual blades, blade-tip vortices, and the complex flow associated with vortices generated at hub-blade junctions. It is found that the blade wakes and features of the tip and hub flow are evident up to about two propeller diameters, beyond which the wake of the body-propeller combination can be regarded as a rotationally-symmetric flow.  相似文献   

19.
High-resolution PIV measurements of the flow field inside cross-flow fans have been performed in planes normal and parallel to the fan axis, both outside and inside the impeller. The well known difficulties in obtaining the optical access inside the impeller have been overcome by allowing the internal flow planes to be illuminated by the laser light sheet or shot by the CCD camera through the moving blade vanes. Measurements have been performed in two cross-flow fans having the same two-module impeller but casing geometries based on very different design concepts. PIV data in planes normal to the rotor axis show a strong correlation between vorticity distribution and turbulent shear stresses inside the eccentric vortex of each fan. Furthermore, they provide useful elements to explain the very different performance of the two fans evidenced by their characteristic curves. Measurements in planes parallel to the impeller axis show that wide three-dimensional recirculation structures develop near the casing end walls at the discharge of the fans. These mean flow structures are responsible for the backflow into the end portions of the impeller of part of the discharged fluid, which is then transported axially by the eccentric vortex towards the rotor central disc before being discharged once again outside the impeller. In the case of cross-flow fans including few rotor modules, the existence of significant axial velocity components inside the eccentric vortex can alter substantially the flow picture, common in the current literature, resulting from 2-D numerical models or measurements performed in a single transverse plane of the fan.  相似文献   

20.
气动力降阶模型是研究叶片气动弹性振动快速高效的新方法。现有气动力降阶模型的研究主要集中在叶片颤振方面,没有涉及更为常见的上游尾流激励的叶片振动问题。本文提出基于Volterra级数的尾流激励叶片气动力降阶模型,为尾流激励下叶片振动和动静叶干涉振动研究提供了新的思路。采用行波法简化尾流的参数个数,用阶跃信号法识别降阶模型的核函数。二维叶片的算例结果表明,本文方法可以较准确地描述尾流激励引起的叶片气动力振荡,而且计算效率极高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号