首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large-Eddy Simulations are conducted on a centrifugal pump at design and reduced flow-rates for three diffuser geometries, to investigate the effect of changing the diffuser inlet angle on the overall performance and the pressure fields. In particular, pressure fluctuations are investigated, which affect the unsteady loads acting on the pump, as well as vibrations, noise and cavitation phenomena. The considered modification of the diffuser geometry is targeted at decreasing the incidence angle at the off-design flow-rate by rotating the stationary blades of the pump around their leading edge. Results are compared against those of an earlier study, where the same modification of the diffuser inlet angle was achieved by increasing also the radial gap between impeller and diffuser, whose blades were rotated relative to their mid camber location. The comparisons across cases demonstrate that the radial gap between the trailing edge of the impeller blades and the leading edge of the diffuser blades has a more profound influence on pressure fluctuations, compared to the angle of incidence on the diffuser blades of the flow coming from the impeller.  相似文献   

2.
The purpose of this work is to study the effects of blade thickness on the performances of an axial-flow fan. Two fans that differ only in the thickness of their blades were studied. The first fan was designed to be part of the cooling system of an automotive vehicle power unit and has very thin blades. The second fan has much thicker blades compatible with the rotomoulding conception process. The overall performances of the fans were measured in a test bench designed according to the ISO-5801 standard. The curve of aerodynamics characteristics (pressure head versus flow-rate) is slightly steeper for the fan with thick blades, and the nominal point is shifted towards lower flow-rates. The efficiency of the thick blades fan is lower than the efficiency of the fan with thin blades but remains high on a wider flow-rate range. The mean velocity fields downstream of the rotors are very similar at nominal points with less centrifugation for the thick blades fan. Moreover, the thick blades fan maintains an axial exit-flow on a wider range of flow-rates. The main differences concern local properties of the flow: phase-averaged velocities and wall pressure fluctuations strongly differ at the nominal flow-rates. The total level of fluctuations is lower for the thick blades fan that for the thin blades fan and the spectral decomposition of the wall fluctuations and velocity signals reveal more harmonics for the thick blades fan, with less correlation between the different signals. For this kind of turbomachinery, the use of thick blades could lead to a good compromise between aerodynamic and acoustic performances, on a wider operating range.  相似文献   

3.
An experimental investigation of unsteady-wake/boundary-layer interaction, similar to that occurring in turbomachinery, has been conducted in a specially modified wind tunnel. Unsteadiness in a turbomachine is periodic in nature, due to the relative motion of rotor and stator blades, resulting in travelling-wave disturbances that affect the blade boundary layers. In the experimental rig, travelling-wave disturbances were generated by a moving airfoil apparatus installed upstream of a flat plate to provide a two-dimensional model of a turbomachine stage. The boundary layer on the flat plate was tripped near the leading edge to generate a turbulent flow prior to interaction with the wakes, and measurements of velocity throughout the boundary layer were taken with a hot-wire probe. The Reynolds number, based on distance along the plate, ranged from 0.144×105 to 1.44×105, and all data were reduced through a process of ensemble averaging. Due to the nonlinear interactions with the boundary layer, the travelling discrete frequency wakes were found to decrease the shape factor of the velocity profile and to increase the level of turbulent fluctuations. Unlike the phase advance found with stationary-wave external disturbances, velocity profiles subject to the travelling wake fluctuations exhibited increasingly negative phase shifts from the free-stream towards the wall.  相似文献   

4.
The flow in the inter-blade channels of a bulb turbine was measured using endoscopic cameras integrated to a stereoscopic particle image velocimetry (S-PIV) system. This paper presents results from the measurement campaign and also provides some key conclusions based on the dataset. The technical aspect of the measurement configuration is addressed. The main focus is on the novelties and challenges brought by the use of endoscopic cameras to achieve S-PIV measurements between the runner blades. For the first time in hydraulic rotating machinery, velocity measurements covered 62 % of a rotor inter-blade flow. After outlining the techniques used, comparison with laser Doppler velocimetry measurements allows assessing the intrusiveness of the endoscopes. Then, some velocity field analyses are shown. First, the rotor–stator interaction is outlined as the influence of the guide vane wakes on the runner flow. The size, localization, strength and dissipation of those structures are inferred from the information coming from measurements. Finally, the PIV data allow the identification of a vortex located near the suction side of the blades and originating from the corner between the leading edge and the hub when operating the bulb turbine at part-load.  相似文献   

5.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

6.
The three‐dimensional flow in a straight blade agitator with free surface on top is simulated using a grid‐free method named moving particle semi‐implicit method. The agitator has six rotor blades matched with six stationary guide blades. The mechanism and phenomena of the flow are investigated in the area between two adjacent stationary guide blades. Eddies near each tip of the rotational blades are predicted, and they move with the motion of the rotor blades but in opposite rotation direction of the rotor. The rotation axis of the eddies is traced and annular vortices, which are made by the eddies, are studied. The pressure pulsation in the rotation process is also predicted with this particle method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Laser velocimetry measurements were made within a laboratory radial vaned diffuser with three different blade configurations. Measurements were made through passages with four, six and eight blades installed at off design conditions. Also, in the eight blade diffuser measurements were made between the blade passage exit and diffuser exit so that the complete secondary flow could be defined. The flow was found to separate from the blades and form large separation zones. The separation zones consisted primarily of two vortices rotating in opposite directions. At the passage exit the separation region encompassed 23% of the circumferential area for the four blade diffuser, 45% for the six blade and 40% in the eight blade diffuser. Separation occurred at 23%, 27% and 50% from the leading edge of the blades for the 4, 6 and 8 bladed diffusers, indicating that more blades better controlled the separation. Turbulence intensities ranged from approximately 5% to 15% in the primary flow and reached a few hundred percent in the secondary flow within the separation regions.  相似文献   

8.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

9.
Large Eddy Simulation of a Controlled Diffusion Compressor Cascade   总被引:1,自引:0,他引:1  
In this research a Controlled Diffusion (CD) compressor cascade stator blade is simulated at a Reynolds number of ??700,000, based on inflow velocity and chord length, using Large Eddy Simulation (LES). A wide range of flow inlet angles are computed, including conditions near the design angle, and at high negative and positive incidence. At all inlet angles the surface pressure distributions are well-predicted by the LES. Near the design angle the computed suction side boundary layer thickness agrees well with experimental data, whilst the pressure side boundary layer is poorly predicted due to the inability of LES to capture natural boundary layer transition on the present grid. A good estimation of the loss is computed near the design angle, whilst at both high positive and negative incidences the loss is less well predicted owing to discrepancies between the computed and experimental boundary layer thickness. At incidences above the design angle a laminar separation bubble forms near the leading edge of the suction surface, which undergoes a transition to turbulence. Similar behaviour is noted on the pressure surface at negative incidence. At high negative incidence contra-rotating vortex pairs are found to form around the leading edge in response to an unsteady stagnation line across the span of the blade. Such structures are not apparent in time-averaged statistical data due to their highly-transient nature.  相似文献   

10.
In this paper, the effect of aerodynamic asymmetries on the flutter characteristics of turbomachinery blades is investigated. Specifically, the present method is used to study the effect of leading edge blending in loaded and unloaded rotors. The unsteady aerodynamic response of the blades to self-excited vibrations is modeled using a harmonic balance method, which allows one to model the entire wheel using complex periodic boundary conditions and a computational grid spanning a single sector (symmetry group). This reduces the computational and memory requirements dramatically compared to similar time-accurate analyses. It is shown that alternate blending degrades the stability of a loaded rotor whereas it improves the stability of an unloaded rotor. On the other hand, when blends are spaced five blades apart their effect is less pronounced.  相似文献   

11.
常规螺杆泵定子有限元分析   总被引:8,自引:0,他引:8  
张劲  张士诚  帅国臣 《力学季刊》2003,24(4):590-598
螺杆泵定子橡胶不仅是易损构件,而且它与转子的配合状况对螺杆泵的工作性能影响显著。目前,还没有能够直接对实际工况下的定子橡胶的变形和受力状态进行测试的有效手段,因此对螺杆泵定子进行有限元分析自然是有益的尝试。重点研究定子橡胶衬垫内轮廓线的变形规律,而应力和应变分布情况仅作为辅助性的分析;对螺杆泵工况的考虑方面,重点研究均匀内压作用的情况,再考虑工作压差以及定子与转子的装配等所引起定子橡胶的变形和受力的变化。利用有限元分析软件Abaqus,对螺杆泵定子进行研究,得出了螺杆泵定子在不同工况下的受力状态和变形规律以及定子材料参数对变形规律的影响。利用此规律可对螺杆泵进行优化设计,提高其工作效率。  相似文献   

12.
Performing PIV measurements within complex turbomachinery with multiple blade rows is difficult due to the optical obstruction to the illuminating sheet and to the camera caused by the blades. This paper introduces a refractive index matched facility that overcomes this problem. The rotor and stator blades are made of transparent acrylic, and the working fluid has the same optical refractive index as the blades. A 64% by weight solution of sodium iodide in water is used for this purpose. This liquid has a kinematic viscosity of about 1.1᎒-6 m2/s, which is almost the same as that of water enabling operation at high Reynolds numbers. Issues related to operating with this fluid such as chemical stability, variations in transmittance and solutions to these problems are discussed. This setup allows full optical access to the entire rotor and stator passages both to the laser sheet and the camera. The experiments are conducted at different streamwise locations covering the entire flow fields around the rotor, the stator, the gap between them, and the wakes behind. Vector maps of the instantaneous and phase-averaged flow fields as well as the distribution of turbulent kinetic energy are obtained. Measurements at different magnifications enable us to obtain an overview of the flow structure, as well as detailed velocity distributions in the boundary layers and in the wakes.  相似文献   

13.
An extensive investigation of the influence of the leakage flow through a labyrinth seal at supply pressure of 12 bar on the rotordynamics was performed by using numerical calculations and experimental measurements. Toward this end, an experimental rotor setup was established in Shanghai Jiao Tong University. Two labyrinth seals were chosen for comparison, e.g., an interlocking seal and a stepped one. The numerical calculations based on the bulk-flow theory and the perturbation analysis were accomplished. Simultaneous acquisitions of the fluctuating static pressure at the stator wall and the displacement of the whirling rotor were made. The influence of the aerodynamic forcing on the rotor was analyzed in terms of the axial distribution of the mean static pressure, the circumferential distribution of the fluctuating pressure, the fist critical speed and the destabilization rotating speed of the rotor. The experimental results demonstrated that the sinusoidal distribution of the fluctuating static pressure on the stator wall was closely related to the whirling motion of the rotor. The first critical speed of the rotor was reduced by the aerodynamic forcing, resulting in intensified destabilization of the rotor system. Furthermore, the numerical analyses were in good agreement to the experimental measurements.  相似文献   

14.
At part load conditions, Francis turbines are subject to the emergence of a hydrodynamic instability in their draft tube, referred to as precessing vortex rope. It induces pressure pulsations in the water passages at the precession frequency of the vortex, leading to additional vibrations and dynamic loads on the runner blades. The prediction of both the dynamic behaviour of the vortex rope and the resulting dynamic loads over a wide operating range is of importance to improve the runner design and robustness on the one hand and to assess additional fatigue and related maintenance costs on the other hand. Such a prediction, either with numerical simulation or reduced scale physical model tests, remains however challenging. The present paper aims at introducing a methodology to assess the vortex behaviour, the related pressure fluctuations and the resulting dynamic strains on the runner over the complete part load operating range. It is based on reduced scale physical model tests of a Francis turbine, including the measurement of the pressure and the load on the runner with instrumented blades. It is shown that the influence of both the discharge factor and speed factor on the vortex dynamics behaviour and related pressure fluctuations can be represented by a single parameter; the swirl number. The correlation with the swirl number is further extended to the dynamic strains induced by the vortex rope on the runner blades. Similar mechanical load and pressure measurements are finally performed on the full-scale machine during a power ramp-up and the results are compared to the empirical correlations established on the reduced scale physical model.  相似文献   

15.
A series of experiments is described in which an uncambered aerofoil, set at a constant incidence was traversed incrementally through a range of combined stagnation temperature/stagnation pressure distortions. Measurement of the static pressure distribution around the aerofoil yielded lift coefficient variations. It was concluded that the aerofoil behaviour was in agreement generally with an associated theoretical development although agreement was somewhat confused by the presence of wakes in the experiment and also by local incidence variations created by circumferential variations in static pressure. The data obtained were directly applicable to wing/wake interactions or to a compressor stator in a flow with distortion. It was recognized that in passing through such a distortion the rotor of a turbomachine would also sense a change of incidence, a feature not included in these experiments.  相似文献   

16.
Field experiments are performed on a two-bladed 33 kW horizontal-axis wind turbine (HAWT). The pressures are measured with 191 pressure sensors positioned around the surfaces of seven spanwise section airfoils on one of the two blades. Three-dimensional (3D) and two-dimensional (2D) numerical simulations are performed, respectively, on the rotor and the seven airfoils of the blade. The results are compared with the experimental results of the pressure distribution on the seven airfoils and the lift coefficients. The 3D rotational effect on the blade aerodynamic characteristics is then studied with a numerical approach. Finally, some conclusions are drawn as follows. From the tip to the root of the blade, the experimental differential pressure of the blade section airfoil increases at first and then decreases gradually. The calculated 3D result of the pressure distribution on the blade surface is closer to that of the experiment than the 2D result. The 3D rotational effect has a significant impact on the blade surface flow and the aerodynamic load, leading to an increase of the differential pressure on the airfoils and their lift coefficient than that with the 2D one because of the stall delay. The influence of the 3D rotational effect on the wind turbine blade especially takes place on the sections with flow separation.  相似文献   

17.
Aerodynamic noise due to interaction between incoming turbulence and rotating blades is an important component in the wind turbine noise. The rod-airfoil configuration is used to investigate the interactive phenomenon experimentally and numerically. Distribution of unsteady pressure on the airfoil surface is measured for different rod positions and airfoil attack angles. Two National Advisory Committee for Aeronatics (NACA) airfoils, NACA0012 and NACA0018, and two wind turbine airfoils, S809 and S825 are investigated. In addition, for low angles of attack, the flow field around the airfoil's leading edge is investigated with the particle image velocimetry (PIV). The experimental results indicate that unsteady pressure disturbances on the airfoil surface are related to the rod vortex shedding. Meanwhile, the interaction flow field of the rod and NACA0012 airfoil is simulated with the unsteady Reynolds averaged Navier-Stokes method (URANS), and the obtained pressure spectra are compared with the experimental results.  相似文献   

18.
The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the rotor since the air-gap distribution between the rotor and the stator is not uniform. This electromagnetic load is a nonlinear function of the distance between the geometric centers of the rotor and the stator. The nonlinear equation of motion is obtained by the inclusion of the nonlinearity in the inertia, the curvature, and the electromagnetic load. After discretization of the governing partial differential equations by the Galerkin method, the multiple-scale perturbation method is used to derive the approximate solutions to the equations. In the numerical results, the effects of the electromagnetic parameter load, the damping coefficient, the amplitude of the initial displacement, the mass moment of inertia, and the rotation speed on the linear and nonlinear backward and forward frequencies are investigated. The results show that the magnetic field has significant effects on the nonlinear frequency of oscillation.  相似文献   

19.
The relative motion of rotor and stator blade rows in a turbomachine generates periodically unsteady flow on the blades due to travelling wake perturbations. To better understand the attendant wake–boundary-layer interaction a calculation procedure was developed to model the behaviour of this complex unsteady flow. Due to nonlinear interactions with the boundary layer, the travelling discrete frequency wakes were found to decrease the velocity profile shape factor. For the range of reduced frequencies examined (=0.33–9.33) the skin-friction coefficient was found to be frequency dependent. The calculated results for both steady and unsteady velocity profiles, and for skin friction compared well with experimental data. Although the agreement between measured and calculated velocity phase shift was poor, in both experimental and model results the negative phase shift throughout the boundary layer due to the travelling-wave fluctuations has been captured.  相似文献   

20.
基于流固耦合的跨声速压气机叶片静气动弹性分析   总被引:2,自引:0,他引:2  
采用时域推进的双向流固耦合方法对一级跨声速压气机叶片流场和固体域进行数值模拟,研究跨声速转子叶片静气动弹性变形及其对气动性能的影响,对比分析了100%转速下转子叶片的气动特性和固有频率的变化.结果表明:转子叶片在气动力和离心惯性力共同作用下的弹性变形以扭转变形为主,气动力对叶尖前缘变形量的影响可达总变形量的20%.转子叶片变形后通道流通能力增强,气动特性曲线向大流量方向偏移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号