首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Scope of this paper is to develop the basic equations for a variational formulation which can be used to solve problems related to convection and/or diffusion dominated flows. The formulation is based on the introduction of a generalized quantity defined as the hear displacement. The governing equation is expressed in terms of this quantity and a variational formulation is developed which leads to a system of equations similar in form to Lagrange's equations of mechanics. These equations can be used for obtaining approximate solutions, though they are of particular interest for application of the finite element method. As an example of the formulation two finite element models are derived for solving convectiondiffusion boundary value problems. The performance of the two models is investigated and numerical results are given for different cases of convection and diffusion with two types of boundary conditions. The applications of the developed formulations are not limited to convection-diffusion problems but can also be applied to other types of problems such as mass transfer, hydrodynamics and wave propagation.  相似文献   

2.
The penalty finite element method for Navier–Stokes equations with nonlinear slip boundary conditions is investigated in this paper. Since this class of nonlinear slip boundary conditions include the subdifferential property, the weak variational formulation is a variational inequality problem of the second kind. Using the penalty finite element approximation, we obtain optimal error estimates between the exact solution and the finite element approximation solution. Finally, we show the numerical results which are in full agreement with the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
梁立孚  罗恩  冯晓九 《力学学报》2007,39(1):106-111
明确了分析力学初值问题的控制方程,按照广义力和广义位移之间的对应关系,将 各控制方程卷乘上相应的虚量,代数相加,进而在 原空间中建立了分析力学初值问题的一种变分原理形式,即建立了分析力学初值问题的卷积 型变分原理和卷积型广义变分原理. 推导了分析力学初值问题卷积型变分原理和卷积型广义 变分原理的驻值条件. 在建立分析力学初值问题的一种变分原理形式的同时, 将变积方法推广为卷变积方法.  相似文献   

4.
The vibration analysis of plates using the multivariable spline element method is presented in this paper. The spline functions are applied to construct bending moments, twisting moments and transverse displacement field functions. The spline equations of eigenvalue problems with multiple variables of vibration of plates are derived based on the Hellinger-Reissner mixed variational principle. For simplicity, the boundary conditions which consist of three local spline points are amended to fit any specified boundary conditions. Several numerical solutions of plate vibration analysis are presented which illustrate the accuracy and convergence of the method.  相似文献   

5.
An efficient dual reciprocity hybrid radial boundary node method is developed for the analysis of Winkler and Pasternak foundation thin plate, in which a hybrid displacement variational principle, radial point interpolation method (RPIM) and dual reciprocity method (DRM) are combined. Firstly, the hybrid displacement variational principle is developed, in which the domain variables are interpolated by two groups of symmetric fundamental solutions, while the boundary variables are interpolated by RPIM instead of the traditional moving least square, and the shape function obtained by RPIM satisfies the delta function property, so boundary conditions can be applied directly. Besides, DRM is exploited to evaluate the particular solutions of inhomogeneous terms, which can be used to transform the domain integrals arising from the inhomogeneous term into equivalent boundary integrals. Finally, some additional equations based on the DRM theory are proposed to overcome the problem that the boundary integral equations are not enough to solve all variables. This method has the advantages of both no element mesh of meshless method and dimensionality reduction of boundary element method. Numerical examples of Winkler and Pasternak foundation plates are given to illustrate that the present method is effective, accurate and it can be further expanded into practical engineering.  相似文献   

6.
薄板动态热耦合弯曲问题的拉普拉斯变换有限元法   总被引:5,自引:0,他引:5  
以薄板动力热耦合弯曲问题的变分原理为基础,提出了一种解决该问题的拉普拉斯变换有限元法,该方法在拉氏域内建立和求解有限元方程,再将结果数值逆变换至时域,得到各给定时刻的解答,周边绝热简支方板的热冲击问题算例说明方法是成功的,该方法为研究薄板此类问题的可能性,其计算结果可供工程设计参考。  相似文献   

7.
根据双调和方程边值问题的边界积分公式,求得了一般载荷作用下悬臂半无限大板的弯曲解,在此基础上求解了不同边界条件下几种半无限大板的弯曲问题.其解式收敛速度快、计算精度高,计算过程相对简单,并与相应有限元解进行了对比分析.  相似文献   

8.
The three-dimensional fundamental equations of elasticity of quasicrystals with extension to quasi-static electric effect are expresses in both differential and variational invariant forms for a regular region of quasicrystal material. The principle of conservation of energy is stated for the regular region and the constitutive relations are obtained for the piezoelasticity of material. A theorem is proved for the uniqueness in solutions of the fundamental equations by means of the energy argument. The sufficient boundary and initial conditions are enumerated for the uniqueness. Hamilton’s principle is stated for the regular region and a three-field variational principle is obtained under some constraint conditions. The constraint conditions, which are generally undesirable in computation, are removed by applying an involutory transformation. Then, a unified variational principle is obtained for the regular region, with one or more fixed internal surface of discontinuity. The variational principle operating on all the field variables generates all the fundamental equations of piezoelasticity of quasicrystals under the symmetry conditions of the phonon stress tensor and the initial conditions. The resulting equations, which are expressible in any system of coordinates and may be used through simultaneous approximation upon all the field variables in a direct method of solutions, pave the way to the study of important dislocation, fracture and interface problems of both elasticity and piezoelasticity of quasicrystal materials.  相似文献   

9.
In this paper we study the boundary value problems for a class of ordinary differential equations with turning points by the method of multiple scales. The paradox in [1] and the variational approach in [2] are avoided. The uniformly valid asymptotic approximations of solutions have been constructed. We also study the case which does not exhibit resonance.  相似文献   

10.
IntroductionThebucklingeigenvalueproblemhasimportantsignificanceinthestabilityanalysisofengineeringstructure.Hencethenumericalcalculationfortheseproblemsisextremelymeaningfulincomputationalmechanics.ThepresentcomputationalmethodsfocusonFEM ,differencem…  相似文献   

11.
In this paper a new hierarchical boundary element method is introducedfor solving the problem of plate bending.Exact solutions of the governing equationsare used inside the domain together with independent deflections and rotations on theboundary.A generalized variational principle is employed to achieve the boundaryelement formulation.Further,the adaptive processes of the method are also discussed.By virtue of the error estimate technique proposed by Zienkiewicz et al.areasonable error indicator and adaptive scheme are suggested.Numerical examplesillustrate the high accuracy of the new elements and show the excellent efficiency ofthe adaptive computation described in this paper.  相似文献   

12.
A novel hybrid graded element model is developed in this paper for investigating thermal behavior of functionally graded materials (FGMs). The model can handle a spatially varying material property field of FGMs. In the proposed approach, a new variational functional is first constructed for generating corresponding finite element model. Then, a graded element is formulated based on two sets of independent temperature fields. One is known as intra-element temperature field defined within the element domain; the other is the so-called frame field defined on the element boundary only. The intra-element temperature field is constructed using the linear combination of fundamental solutions, while the independent frame field is separately used as the boundary interpolation functions of the element to ensure the field continuity over the interelement boundary. Due to the properties of fundamental solutions, the domain integrals appearing in the variational functional can be converted into boundary integrals which can significantly simplify the calculation of generalized element stiffness matrix. The proposed model can simulate the graded material properties naturally due to the use of the graded element in the finite element (FE) model. Moreover, it inherits all the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional FEM and boundary element method (BEM). Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show a good numerical accuracy.  相似文献   

13.
A boundary element method is proposed for studying periodic shallow water problems. The numerical model is based on the shallow water equation. The key feature of this method is that the boundary integral equations are derived using the weighted residual method and the fundamental solutions for shallow water wave problems are obtained by solving the simultaneous singular equations. The accuracy of this method is studied for the wave reflection problem in a rectangular tank. As a result of this test, it has been shown that the number of element divisions and the distribution of nodes are significant to the accuracy. For numerical examples of external problems, the wave diffraction problems due to single cylindrical, double cylindrical and plate obstructions are analysed and compared with the exact and other numerical solutions. Relatively accurate solutions are obtained.  相似文献   

14.
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.  相似文献   

15.
General exact solutions in terms of wavelet expansion are obtained for multiterm time-fractional difusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial diferential equations are converted into time-fractional ordinary diferential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-difusion problems are given to validate the proposed analytical method.  相似文献   

16.
This paper deals with the bending of rectangular thin plates point-supported at three corners using an analytic symplectic superposition method. The problems are of fundamental importance in both civil and mechanical engineering, but there were no accurate analytic solutions reported in the literature. This is attributed to the difficulty in seeking the solutions that satisfy the governing fourth-order partial differential equation with the free boundary conditions at all the edges as well as the support conditions at the corners. In the following, the Hamiltonian system-based equation for plate bending is formulated, and two types of fundamental problems are analytically solved by the symplectic method. The analytic solutions of the plates point-supported at three corners are then obtained by superposition, where the constants are obtained by a set of linear equations. The solution procedure presented in this paper offers a rigorous way to yield analytic solutions of similar problems. Some numerical results, validated by the finite element method, are shown to provide useful benchmarks for comparison and validation of other solution methods.  相似文献   

17.
压电材料平面裂纹尖端场的杂交应力有限元分析   总被引:3,自引:1,他引:3  
周勇  王鑫伟 《力学学报》2004,36(3):354-358
基于复势理论和杂交变分原理建立了一种适用于力电耦合分析的杂交应力有限元模 型. 给出了建立刚度矩阵的主要公式和推导过程,单元内的位移场和应力场采用满足平 衡方程的复变函数级数解,假设的复变函数级数解事先精确满足裂纹的无应力和电位移法向 分量为零的条件,单元外边界的位移场假设按抛物线变化, 单元的刚度矩阵采用Gauss积分的方法得出. 通过对力电耦合裂尖场的数值计算验证了程序 的正确性和单元的有效性,同时也用所得结果校验了理论解.  相似文献   

18.
In this paper, a generalized variational principle of elastodynamics in composite shallow shells with edge beams is presented, and its equivalence to corresponding basic equations, ridge conditions and boundary conditions is proved. Then this variational principle is applied to the folded shell structure. By means of double series, the approximate analytical solutions for statics and dynamics under common boundary conditions are obtained. The comparison of our results with FEM computations and experiments shows the analytical solutions have good convergence and their accuracy is quite satisfactory.  相似文献   

19.
比例边界有限元方法是求解偏微分方程的一种半解析半数值解法。对于弹性力学问题,可采用基于力学相似性、基于比例坐标相似变换的加权余量法和虚功原理得到以位移为未知量的系统控制方程,属于Lagrange体系。但在求解时,又引入了表面力为未知量,控制方程属于Hamilton体系。因而,本文提出在比例边界有限元离散方法的基础上,利...  相似文献   

20.
基于含椭圆核有限大各向异性板弹性问题的复变函数级数解,应用杂交变分原理建立了一种与常规有限元相协调的含任意椭圆核各向异性板杂交应力有限元.单元内的应力场和位移场采用满足平衡方程、几何方程与物理方程的复变函数级数解,假设的复变函数级数解精确满足椭圆核边界处的位移协调条件和应力连续条件,单元外边界上的位移场按常规有限元位移场假设,单元内椭圆核的长轴可以与材料主轴不重合.单元刚度矩阵采用Gauss积分求得,并给出了建立刚度矩阵的主要公式和推倒过程.数值计算结果表明该单元具有计算精度高、计算工作量小等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号