首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
微纳米材料及其结构的界面强度的实验研究   总被引:4,自引:2,他引:2  
介绍了近年来微纳米材料强度实验测试研究方面的最新进展,重点综述了可用于微纳米材料及其结构中界面强度测试的实验系统、测试方法及结果.主要内容包括:测试微纳米薄膜界面端分层裂纹启裂的夹层悬臂梁方法,测试纳米岛/衬底间界面结合强度的改进AFM (atomic force microscopy)方法, 测试裂纹沿界面扩展的预裂纹法,可实现纳米薄膜界面裂纹原位观察的实验测试方法,测试薄膜在疲劳、蠕变条件下界面裂纹扩展的改进4点弯曲法等.除了总结分析测试结果,还讨论了上述实验方法的优缺点和适用范围,并指出了微纳米材料界面强度实验研究方面的一些挑战与难点,最后提出了若干需要继续研究的课题.   相似文献   

2.
先进微制造力学   总被引:2,自引:0,他引:2  
刘泽 《固体力学学报》2018,39(3):223-247
元器件小型化带来了功耗低、响应快、比容量大等显著优点,但同时也带来了新的技术挑战和科学问题,需要对微纳尺度下材料的机械物理性能及制造工艺进行深入研究。论文围绕先进微纳米制造技术与微纳米力学的密切关系,首先综述了聚焦离子束、纳米压印、3D打印等微纳米材料与结构的先进制造技术,并着重阐述了先进微纳米制造技术在力学前沿课题研究中的重要作用;另一方面,从方法与原理的角度阐述了力学思想和方法对先进微纳米制造技术的指导与促进作用。最后,还对目前一些先进微纳米制造技术及相关前沿力学问题进行了展望。  相似文献   

3.
纳米材料力学行为的原子尺度模拟研究   总被引:1,自引:1,他引:0  
对几何尺寸极小的纳米材料而言,数值模拟是与实验测试同样有效的研究手段, 而且,当材料特征尺寸更小、缺乏可用的测试系统时,数值模拟可能是唯一的方法.介绍了近年来纳米材料力学行为的原子尺度数值模拟研究方面的若干新进展,重点综述了采用分子动力学模拟与第一原理计算对纳米材料的晶格不稳定性、理想强度、界面断裂、碳纳米管的力电特性和铁电纳米材料的力电特性等问题的研究结果.总结介绍了纳米材料原子尺度模拟中一些实用的计算策略和方法,并提出了若干需要进一步研究的问题.   相似文献   

4.
纳米材料力学行为的原子尺度模拟研究   总被引:1,自引:0,他引:1  
凌贤长  唐亮 《力学进展》2010,40(3):263-283
对几何尺寸极小的纳米材料而言, 数值模拟是与实验测试同样有效的研究手段, 而且, 当材料特征尺寸更小、缺乏可用的测试系统时, 数值模拟可能是唯一的方法. 介绍了近年来纳米材料力学行为的原子尺度数值模拟研究方面的若干新进展, 重点综述了采用分子动力学模拟与第一原理计算对纳米材料的晶格不稳定性、理想强度、界面断裂、碳纳米管的力电特性和铁电纳米材料的力电特性等问题的研究结果. 总结介绍了纳米材料原子尺度模拟中一些实用的计算策略和方法, 并提出了若干需要进一步研究的问题.  相似文献   

5.
谭雅文  江进武 《力学进展》2020,50(1):202005
近些年二维纳米材料得到了大量的研究,其中一个热点研究方向是将不同的二维纳米材料堆垛成纳米异质结构,从而实现多功能的纳米器件.这些二维纳米材料可以从面外和面内两个方向上进行堆垛从而形成两类不同的异质结构.在关于这类二维纳米材料及其异质结构的理论研究中,原子间的相互作用起到类似于连续介质力学中本构关系的作用.因此学者提出了多种方案用于描写原子间相互作用,主要包括第一性原理计算和经验势能模型等.本文主要是对比和分析各种描写二维纳米材料及其异质结构的常见经验势能模型,从而为研究人员选择相互作用模型提供一些参考.   相似文献   

6.
采用局部表面纳米化技术和数值模拟方法,对金属薄壁多胞结构的吸能问题开展有限元数值分析和优化设计.结果 显示,局部表面纳米化布局可诱导结构的屈曲变形,并能大幅度提高结构的能量吸收.优化结果还发现,在多胞外壁呈交错矩形格状表面纳米化格局和内附加结构呈均布框架式矩形格状表面纳米化布局情况下,结构屈曲变形稳定且吸能效果最优.该研究为吸能结构的设计提供了依据.  相似文献   

7.
针尖的化学物理力学研究   总被引:4,自引:2,他引:4  
郭万林  台国安  姜燕 《力学进展》2005,35(4):585-599
扫描探针显微镜的发明, 使人们了解纳米、分子和原子尺度的超微结构, 探测原子、分子间的力、电、磁及其复杂的物理和化学性质, 以及进行单原子、单分子操纵 成为现实. 本文从探针技术与表面化学物理力学耦合的角度出发, 首先对针尖的化学物理力 学研究领域进行了概述, 接着介绍了针尖的几种重要的化学修饰方法, 包括金属薄膜、自组 装单分子膜、胶体粒子及碳纳米管修饰; 然后以理论与实验结合的方式介绍了几个研究活跃 的领域: 表面力及分子间力(主要包括Van der Waals力, 双电层力, 憎水亲合力, Casimir力和单键力等)的理论描述与测量, 针尖的化 学物理力学在化学力滴定和表面化学识别等研究中的应用. 讨论了针尖与基底材料对测量力 的影响. 而这些复杂的原子、分子相互作用和物理、化学、力学及生物特性的实现均发生于 小小针尖上, 由此我们提出了``针尖力学'的概念. 并且指出多场(如电场、磁场、超声、 微波等)作用下, 针尖的化学物理力学研究将成为力学交叉学科研究的重点和热点.  相似文献   

8.
压电纳米材料具有机电耦合性强、功耗低和反应灵敏等独特性能,且能满足工程对压电器件微型化的要求,从而在传感、微纳米机电系统和柔性电子器件等领域展现出了广阔的应用前景. 高比表面积引起的表面效应是压电纳米材料最重要的结构特征之一,其对材料的整体力学性质起着决定性的作用.表面效应会导致应力和电位移在压电表面的两侧出现间跃,故传统的力电场连续性条件将不再适用.考虑表面为不计厚度却拥有独立材料参数的薄层,采用表面压电模型计及表面弹性、表面压电性、表面介电性和表面密度的影响,本文研究了压电纳米板中SH型导波的传播特性,给出了板边界处的非典型力电平衡条件,得到了频散方程的解析表达,并结合数值算例详细讨论了表面材料参数和结构尺寸对对称和反对称频散模态的影响.结果表明:SH型导波在压电纳米板中的传播具有明显的尺寸相关性,即当板厚很小时,表面效应会显著改变其频散行为,而随着板厚的增大,表面效应的影响会不断减弱直至可忽略不计.   相似文献   

9.
压电纳米材料具有机电耦合性强、功耗低和反应灵敏等独特性能,且能满足工程对压电器件微型化的要求,从而在传感、微纳米机电系统和柔性电子器件等领域展现出了广阔的应用前景.高比表面积引起的表面效应是压电纳米材料最重要的结构特征之一,其对材料的整体力学性质起着决定性的作用.表面效应会导致应力和电位移在压电表面的两侧出现间跃,故传统的力电场连续性条件将不再适用.考虑表面为不计厚度却拥有独立材料参数的薄层,采用表面压电模型计及表面弹性、表面压电性、表面介电性和表面密度的影响,本文研究了压电纳米板中SH型导波的传播特性,给出了板边界处的非典型力电平衡条件,得到了频散方程的解析表达,并结合数值算例详细讨论了表面材料参数和结构尺寸对对称和反对称频散模态的影响.结果表明:SH型导波在压电纳米板中的传播具有明显的尺寸相关性,即当板厚很小时,表面效应会显著改变其频散行为,而随着板厚的增大,表面效应的影响会不断减弱直至可忽略不计.  相似文献   

10.
基于局部表面纳米化技术,设计了一种双层嵌套式金属薄壁吸能结构。在表面纳米化技术对金属力学性能影响的研究基础上,优化了环向交错式和连续式条纹局部表面纳米化布局,得到了双层嵌套式方管吸能结构设计方案和吸能参数。结果表明,表面纳米化对材料的屈服极限提升显著,所设计的局部纳米化双层嵌套式方管吸能结构的比吸能可提高57.1%。同时也证实局部表面纳米化是一种有效的吸能提升技术。  相似文献   

11.
纳米材料的研究进展   总被引:23,自引:1,他引:22  
纳米材料是由尺度 在1~100nm的微小颗粒组成的体系。由于它具有独特的性能而备受关注。本文总结了近几年来纳米材料的研究进展,着重从纳米材料的制备、微观结构、力学及热力学性能的研究情况作了一个概述,总结了有关纳米材料的几个研究热点以及分子动力学计算机模拟在纳米材料研究中的应用。最后并指出了几个急待研究的工作。   相似文献   

12.
Zinc hydroxide nitrate, an anionic exchanger layered material, undoped as well as doped with 2–10% nickel, was synthesized by using a pH-controlled precipitation method. The layered materials were then used to produce the undoped and nickel-doped zinc oxides by hydrothermal-treatment. X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the formation of pure phase undoped and nickel-doped layered materials, as well as the products of the hydrothermal-treated materials, nanostructured zinc oxides. Optical studies of the nanostructured zinc oxides showed a decrease in band gap with increasing content of the doping agent, nickel.  相似文献   

13.
近年来,梯度纳米结构金属因其优越的力学性能和独特的塑性变形机理受到广泛关注,已成为材料与力学学科的热点和前沿。本文首先介绍梯度纳米结构金属的强度、塑性、加工硬化和抗疲劳等核心力学性能,以及晶粒长大、塑性应变梯度和几何必需位错等塑性变形机理及其力学研究。其次介绍梯度纳米结构金属的多尺度计算与模拟研究。最后讨论梯度纳米结构金属研究领域存在的挑战。  相似文献   

14.
Surface and interface play an important role on the overall mechanical behaviors of nanostructured materials. We investigate the effect of surface/interface stress on the macroscopic plastic behaviors of nanoporous materials and nanocomposites, where both the surface/interface residual stress and surface/interface elasticity are taken into account. A new second-order moment nonlinear micromechanics theory is developed and then reduced to macroscopically isotropic materials. It is found that the effect of surface/interface residual stress is much more prominent than that of the surface/interface elasticity, causing strong size effect as well as asymmetric plastic deformation for tension and compression. The variation of yield strength is more prominent with smaller pore/inclusion size or higher pore/inclusion volume fraction. For a representative nanoporous aluminum, the surface effect becomes significant when the pore radius is smaller than about 50 nm. When hard inclusions are embedded in a ductile metal matrix, the interface effect and resulting size effect are much smaller than that of nanoporous materials. The results may be useful for evaluating the mechanical integrity of nanostructured materials.  相似文献   

15.
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar"structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns.The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively.The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material.In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.  相似文献   

16.
The nanostructured Al-based composites possess the combination of high yield strength and good ductility. In this paper, a micromechanical model is presented to simulate the mechanical response of bimodal nanostructured Al and the particle-reinforced aluminum matrix composite(PAMC). The constitutive relations for different phases are addressed in the model, as well as the contribution of microcracks. Numerical results show that the model can successfully describe the enhanced strength and ductility of the bimodal nanostructured Al, and the predictions of the PAMC are in good agreement with the experimental data. It is worth noting that the strength and ductility are sensitive to the volume fraction of constituents and the distribution of microcracks in both bimodal nanostructured Al and PAMC. Therefore, the present theoretical results can be used to optimize the microstructure for improving the mechanical properties of nanostructured Al-based composites.  相似文献   

17.
Surface plays an important role in the physical and mechanical behavior of nanostructured materials and elements, however surface energy of curved solid surfaces has not been fully understood. In the present letter, surface energy of spherical particles and cavities in FCC copper is calculated by embedded atom method. The numerical simulations reveal that the distribution of atom energy is non-uniform on the curved surfaces. However, when the radius of spherical cavity or particle is larger than 4 nm, the average surface energy density keeps almost constant irrespective of its location and radius.  相似文献   

18.
This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements,including nanoparticles,nanowires,nanobeams,and nanofilms,and heterogeneous materials containing nanoscale inhomogeneities.It begins with the fundamental formulations of surface mechanics of solids,including the definition of surface stress as a surface excess quantity,the surface constitutive relations,and the surface equilibrium equations.Then,it depicts some theoretical and experimental studies of the mechanical properties of nanostructured elements,as well as the static and dynamic behaviour of cantilever sensors caused by the surface stress which is influenced by adsorption.Afterwards,the article gives a summary of the analytical elasto-static and dynamic solutions of a single as well as multiple inhomogeneities embedded in a matrix with the interface stress prevailing.The effect of surface elasticity on the diffraction of elastic waves is elucidated.Due to the difficulties in the analytical solution of inhomogeneities of complex shapes and configurations,finite element approaches have been developed for heterogeneous materials with the surface stress.Surface stress and surface energy are inherently related to crack propagation and the stress field in the vicinity of crack tips.The solutions of crack problems taking into account surface stress effects are also included.Predicting the effective elastic and plastic responses of heterogeneous materials while taking into account surface and interface stresses has received much attention.The advances in this topic are inevitably delineated.Mechanics of rough surfaces appears to deserve special attention due to its theoretical and practical implications.Some most recent work is reviewed.Finally,some challenges are pointed out.They include the characterization of surfaces and interfaces of real nanomaterials,experimental measurements and verification of mechanical parameters of complex surfaces,and the effects of the physical and chemical processes on the surface properties,etc.  相似文献   

19.
The multi-scale deformation and interfacial mechanical behavior of carbon nanotube fibers with multi-level structures are investigated by experimental and theoretical methods. Multi-scale experiments including uniaxial tensile testing, in situ Raman spectroscopy, and scanning electron microscopy are conducted to measure the mechanical response of multi-level structures within the fiber under tension. A two-level interfacial mechanical model is then presented to analyze the interfacial bonding strength of mesoscopic bundles and microscopic nanotubes. The evolution characteristics of multi-scale deformation of the fiber are described based on experimental characterization and interfacial strength analysis. The strengthening mechanism of the fiber is further studied. Comprehensive analysis shows that the property of multi-level interfaces is a critical factor for the fiber strength and toughness. Finally, the method of improving the mechanical properties of fiber-based materials is discussed. The result can be used to guide multi-level interface engineering of carbon nanotube fibers and fiber-based composites to produce high performance materials.  相似文献   

20.
In recent years nanostructures have been widely used in industry, for example in nanoelectromechanical systems (NEMS); knowledge of the mechanical behavior of nanostructured materials is therefore important. In the work discussed in this paper, the non-dimensional buckling load of rectangular nano-plates was determined for general boundary conditions. Non-local theory was used to derive the governing equation, and this equation was then solved, by use of the finite-difference method, by applying different combinations of boundary conditions. To verify the proposed method, the non-dimensional buckling load determined for a simply supported plate was compared with results obtained by use of local theory and with results reported in the literature. When the method was used to calculate the buckling load of nano-beams, results were in good agreement with literature results. As a novel contribution of the work, non-symmetric boundary conditions were also studied. The non-dimensional buckling load was obtained for several values of aspect ratio, non-local variables, and different types of boundary condition. For better understanding, mode shapes are also depicted. The finite-difference method could be a powerful means of determination of the mechanical behavior of nanostructures, with little computational effort, and the results could be as reliable as those obtained by use of other methods. The ability to deal with a combination of boundary conditions illustrates the advantages of this method compared with other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号