首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Crushing of particles in idealised granular assemblies   总被引:1,自引:0,他引:1  
Four idealised assemblies of equally sized spherical particles are subjected to a range of macroscopic compressive principal stresses and the contact forces on individual particles are determined. For each set of contact forces the stress fields within individual particles are studied. A failure criterion for brittle materials is imposed and indicates that crushing (or rupture) occurs when the maximum contact force reaches a threshold particle strength value, irrespective of the presence and magnitude of other lesser contact forces acting on the particle and the material properties of the particle. Combining the crushing mechanism with an assembly instability mechanism enables failure surfaces to be drawn in the three-dimensional stress space. A simple spatial averaging technique has been applied to the failure surfaces to remove the effects of assembly anisotropies. Sections of the failure surfaces on π planes have similarities to those commonly used in sand modelling.  相似文献   

2.
The failure behavior of intermittent jointed rocks is dependent on joint configurations. Joint inclination angle and continuity factor determined the joint arrangement in a rectangular numerical sample that was established by using the particle flow code approach. To identify the differences in the failure processes of identical intermittent jointed samples, uniaxial compressive and shear loads were applied on each sample. The crack growth path presented the four typical crack coalescence patterns identified via compressive and shear numerical tests. The crack coalescence pattern was associated with joint slant angle and continuity factor. The observed crack coalescence patterns of every sample with the same inclination angle and continuity factor were partially identical under compressive and shear loading. The differences in the crack patterns of the compressive and shear failure processes were described and compared. Typical compressive and shear failure processes were illustrated. Four compressive and three shear failure modes were identified. The cracking location and number of cracks in each failure mode were different. Additionally, the contact force evolution among particles during shear and compressive loading was different and likely accounted for the differences in cracking patterns. Under compressive or shear loading, the contact force concentration in each sample underwent the following stages: uniform distribution before loading, concentrated distribution, and scattered distribution after failure.  相似文献   

3.
1. Introduction The core mechanism of comminution could be reduced to the breakage of individual particles that occurs through contact with other particles or with the grinding media, or with the solid walls of the mill (Potapov & Campbell, 1994). When a particle is subjected to a load, the nature of the stress field around and within the brittle particle, its material properties, and the size and distribution of micro-flaws within the particle govern the size and shape distribution of the fra…  相似文献   

4.
The effect of particle clustering on void damage rates in a ductile material under triaxial loading conditions is examined using three-dimensional finite element analysis. An infinite material containing a regular distribution of clustered particles is modelled using a unit cell approach. Three discrete particles are introduced into each unit cell while a secondary population of small particles within the surrounding matrix is represented using the Gurson-Tvergaard-Needleman (GTN) constitutive equations. Deformation strain states characteristic of sheet metal forming are considered; that is, deep drawing, plane strain and biaxial stretching. Uniaxial tensile stress states with varying levels of superimposed hydrostatic tension are also examined.The orientation of a particle cluster with respect to the direction of major principal loading is shown to significantly influence failure strains. Coalescence of voids within a first-order particle cluster (consisting of three particles) is a stable event while collapse of inter-cluster ligaments leads to imminent material collapse through void-sheeting.  相似文献   

5.
Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.  相似文献   

6.
Cure cast plastic bonded explosives (PBXs) consist of relatively hard particles in a soft binder. Under compressive loading, the explosive cyrstals come into contact that causes high stress concentrations. The lines along which the crystals are loaded are called stress chains. Damage done to these particle beds during compressive loading can lead to reaction. The photoelastic effect of PMMA is exploited to examine the stress state within a two-dimensional particle bed. Stress chain development within the bed is recorded and is shown to increase the stress state within some particles while leaving others unloaded. These concentrations form early in the loading process, leading to fracture along the stress bridges and generating likely reaction initiation sites. Through material point method simulations, contact friction is shown to have a large effect on the stress distribution within the particle bed.  相似文献   

7.
The permeability of the caved zone in a longwall operation impact many issues related to ventilation and methane control, as well as to interaction of gob gas ventholes with the mining environment. Insofar as the gob is typically inaccessible for performing direct measurements of the stresses and permeability, the latter values of the caved zone have to be assessed indirectly, which requires the application of the most reliable prediction techniques. To study the permeability evolution of the broken coal and its influencing factors during the coal seam group repeating mining, the particle deformation of the broken coal sample (BCS) is assessed in this study based on the Hertz contact deformation principle. Using the experimental results of the BCS cyclic loading and unloading seepage tests, the effect of BCS parameters on the stress sensitivity for permeability is analyzed. The laboratory test results imply that the re-crushing, re-arrangement, and compressional deformation of particles in the loading process lead to a drastic drop in the caved zone porosity causing the permeability reduction. During the unloading process, only the permeability loss caused by the particle deformation can be recovered. The secant modulus of BCS during unloading is stable and can be assessed by fitting the permeability stress curves. The stress sensitivity of the BCS permeability during unloading process drops with an increase in the secant modulus, while the re-crushing capacity and re-arrangement ability of BCS particles gradually deteriorate due to an increase in the secant modulus with the number of loading cycles. The effect of Poisson’s ratio on the permeability stress sensitivity at the later loading/unloading stages is found to be quite feeble, while the stress sensitivity is indirectly related to the particle size via the secant modulus: the greater the particle size, the higher the unloading stress sensitivity.  相似文献   

8.
Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles \((\hbox {LiMn}_{2}\hbox {O}_{4})\) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.  相似文献   

9.
Stress evolution in a dense granular material is closely related to interactions of contacting particles. We investigate statistics related to particle interactions and the relationship between the averaged local relative motion and the macroscopic motion. The validity of the Voigt and Reuss assumptions is examined, and extensions to these assumptions are proposed. Effects of history in the dense granular material are investigated. Statistical samples used in this paper are obtained using three-dimensional numerical simulations of dense granular media under uniaxial cyclical compression. The results show that stresses arise mostly from normal forces between particles, and direct contributions from frictional tangential forces between particles are small. Tangential friction, however, significantly increases the particle contact time, and thus reduces the rate of contact breakage. The contact breakage rate is demonstrated to be a stress relaxation rate. Therefore, stress increases significantly with friction between particles as a result of prolonged relaxation time.  相似文献   

10.
等离子喷涂层接触疲劳失效模式及失效机理的研究   总被引:6,自引:1,他引:5  
研究了等离子喷涂层在不同应力水平下的接触疲劳失效模式与声发射幅值的对应关系,并分析了涂层的接触疲劳失效机理.结果表明:声发射幅值与接触应力的大小无明显的关系,根据疲劳失效时的声发射幅值可以判断涂层接触疲劳失效模式,幅值为87~93 dB时易发生剥落或分层失效,幅值为78~83 dB易发生点蚀失效.涂层表面微凸体与轴承球滚压接触产生黏着磨损以及涂层、磨粒、轴承球三者形成的三体磨料磨损是点蚀失效产生的主要原因.剥落失效主要与涂层表面微观缺陷处裂纹的萌生、扩展以及表面磨损行为有关.层内分层失效是由涂层内部最大剪切应力控制的,而界面分层失效主要是由涂层与基体的低结合强度、热失配以及界面剪切应力造成的.  相似文献   

11.
The objective of this investigation was to study the deformation and failure of uniaxially loaded graphite/epoxy plates with cracks and to determine the influence of notch size on failure. The specimens were quasi-isotropic laminates with cracks of various lengths. They were instrumented with strain gages, photoelastic coatings and moiré grids. Strains near the crack tip show two distinct points of rate change at strain levels of 0.002 and 0.006, the latter corresponding to the ultimate strain of the 90-deg plies. Failure near the crack tip takes the form of a damage zone consisting of ply subcracking along fibers, local delamination and fiber breakage. Failure occurs when this damage zone reaches some critical value. Measured maximum strains at failure exceeded twice the ultimate strain of the unnotched laminate. The average stress over a characteristic distance (5 mm) from the crack tip was used as a criterion to describe the influence of crack length on failure. Comparison of results with those from similar specimens with circular holes showed that strength was nearly independent of notch geometry in this case, i.e., specimens with holes and cracks of the same size had nearly the same strength.  相似文献   

12.
可破碎颗粒体在动力载荷下的耗能特性   总被引:1,自引:0,他引:1  
祁原  黄俊杰  陈明祥 《力学学报》2015,47(2):252-259
采用离散元的数值方法, 通过连接键将若干小颗粒绑定为一个具有不规则外形的大颗粒体, 设置不同连接键强度模拟了颗粒体在外加动力载荷下破碎过程, 并探讨其中系统能量耗散特性. 计算结果表明, 颗粒体的破碎程度决定了系统能量耗散率, 即内部耗能占外界输入能量的比例. 破碎率越高, 颗粒间相互摩擦和碰撞越剧烈,系统能量耗散率越高. 同时, 在循环载荷下系统内颗粒体破碎绝大部分发生在加载初期, 随着颗粒体的分解破碎速率逐渐减小, 系统耗能能力也随之降低.   相似文献   

13.
本文采用宏观试验和细观模拟相结合的方法研究胶结砂砾石层面在剪切过程中的破坏行为.首先进行了不同法向应力作用下的胶结砂砾石层面直剪试验,获得了不同的剪切面破坏特征:随着法向应力的不断增加,剪切破坏面凹凸起伏程度、骨料脱落现象越发明显.其次为了深入探究层面破坏现象,按照室内试验采用的骨料级配粒径建立细观颗粒数值模型,结合物理试验对模型进行参数标定,并进行数值模型的层面直剪模拟和细观分析.结果表明,数值模型可以再现宏观直剪试验层面破坏特征;法向应力越大,层面区域颗粒发生错动和翻转的数量越多;层面破坏方式为颗粒间的张拉和剪切混合破坏,裂隙均集中在层面位置,随着法向应力的增加,裂隙的集中区域逐渐由“面”向“带”转变.  相似文献   

14.
By combining DEM (Discrete Element Method) and FEM (Finite Element Method),a model is established to simulate the breakage of two-dimensional sharp-edge particles,in which the simulated particles are assumed to have no cracks.Particles can,however,crush during different stages of the numerical analysis,if stress-based breakage criteria are fulfilled inside the particles.With this model,it is possible to study the influence of particle breakage on macro- and micro-mechanical behavior of simulated angular materials.Two series of tests,with and without breakable particles,are simulated under different confining pressures based on conditions of biaxial tests.The results,presented in terms of micromechanical behavior for different confining pressures,are compared with macroparameters.The influence of particle breakage on microstructure of sharp-edge materials is discussed and the related confining pressure effects are investigated.Breakage of particles in rockfill materials are shown to reduce the anisotropy coefficients of the samples and therefore their strength and dilation behaviors.  相似文献   

15.
By combining DEM (Discrete Element Method) and FEM (Finite Element Method), a model is established to simulate the breakage of twodimensional sharp-edge particles, in which the simulated particles are assumed to have no cracks. Particles can, however, crush during different stages of the numerical analysis, if stress-based breakage criteria are fulfilled inside the particles. With this model, it is possible to study the influence of particle breakage on macro- and micro-mechanical behavior of simulated angular materials. Two series of tests, with and without breakable particles, are simulated under different confining pressures based on conditions of biaxial tests. The results, presented in terms of micromechanical behavior for different confining pressures, are compared with macroparameters. The influence of particle breakage on microstructure of sharp-edge materials is discussed and the related confining pressure effects are investigated. Breakage of particles in rockfill materials are shown to reduce the anisotropy coefficients of the samples and therefore their strength and dilation behaviors.  相似文献   

16.
The safety of many civil and mining concrete and rock structures including pre-existing crack networks is fundamentally affected by the mechanical behaviour of the material under static and cyclic loading. In cyclic loading case, cracks can grow at a lower load level compared to the monotonic case. This phenomenon is called fatigue due to subcritical crack propagation and depends on the behaviour of the fracture process zone (FPZ). This study presents the results of laboratory diametrical compression tests performed on Brisbane tuff disc specimens to investigate their mode-I (tensile) fracture toughness response to static and cyclic loading and relevant FPZ. The FPZ and fracture toughness response to cyclic loading was found to be different from that under static loading in terms of the ultimate load and the damage mechanisms in front of the chevron crack. A maximum reduction of the static fracture toughness (K IC ) of 42 % was obtained for the highest amplitude increasing cyclic loading test. Detailed scanning electron microscope (SEM) examinations were performed on the surfaces of the tips of the chevron notch cracks, revealing that both loading methods cause FPZ development in the CCNBD specimens. When compared with monotonic FPZ development, the main difference with the cyclically loaded specimens was that intergranular cracks were formed due to particle breakage under cyclic loading, while smooth and bright cracks along cleavage planes were formed under static loading. Further, the SEM images showed that fatigue damage in Brisbane tuff is strongly influenced by the failure of the matrix because of both intergranular and transgranular subcritical fracturing.  相似文献   

17.
付云伟  倪新华  刘协权  张龙  文波 《力学学报》2016,48(6):1334-1342
含尖角的非椭球颗粒附近应力集中较大,诱导缺陷形成裂纹是材料损伤的重要来源.对于强界面颗粒,大刚度颗粒诱导裂纹向基体中扩展形成近似平面片状裂纹,认为诱导裂纹受颗粒应力附近应力场控制,基于有效自洽理论建立了材料细观损伤模型,得到了单向拉伸下的损伤演化,并分析了颗粒形状、尺寸、颗粒性能以及颗粒与初始缺陷相对位置等因素对材料损伤的影响.结果表明,非椭球颗粒更易诱发裂纹,同样外载应力下,损伤程度更大,含非椭球颗粒材料强度更低;含扁平型的颗粒材料裂纹损伤过程更加明显并且材料强度更大;提高颗粒刚度和含量能够增大材料强度.材料中存在尺寸过大或过小的初始裂纹时材料损伤过程不明显.  相似文献   

18.
Inter-contact force analysis of impacted disk assembly by dynamic caustics   总被引:1,自引:0,他引:1  
The caustic method was utilized to study the contact force transmission in disk assemblies under impact load. The mapping equations were obtained based on the first invariant of the stress components in the disk subject to a normal concentrated force, and a characteristic dimension of the maximum size in the caustic curve was proposed to evaluate the contact force between the disks. Transient patterns of the caustic shadows were recorded by means of a high-speed camera of off-focus imaging, then the histories of the inter-contact forces among the disks were obtained with respect to the conditions of different masses and heights of the falling hammers. The influence of the impact loading and impulsive velocity was analyzed with respect to the force responses of the disk assembly, the double-peak phenomenon with comparison to the initial masses, and the energy dissipation of the systems under impact of different momentums. The project supported by the National Natural Science Foundation of China (10125211)  相似文献   

19.
王蕉  楚锡华 《力学学报》2021,53(9):2395-2403
研究颗粒材料中的波传播问题在超材料制造方面有重要意义, 如波传导超材料边界的设计需考虑应力波的反射和吸收等问题. 本文从一维颗粒链中的波传播行为出发, 根据距边界不同位置处颗粒能够得到的最大动能的不同, 给出了临边界区域的定义. 然后分析了多组二维颗粒样本在冲击载荷作用下应力波的传播行为, 主要考虑了不同边界形状及不同颗粒排列方式对应力波在临边界区域内传播行为的影响. 研究表明, 临边界区颗粒排列方式主要影响边界附近颗粒的相对位置和局部孔隙率; 经边界反射后的应力波直接以边界形状在临边界区内传播, 该结论在边界情况越复杂(高局部孔隙率, 颗粒无序随机排列)时越准确; 在临边界区域外(即材料中心区域), 波前形状主要由波速决定. 弧形边界对波反射的汇聚作用和临边界区域内颗粒的排列方式所引起的弥散作用是两个竞争因素, 共同决定临边界区域内波的反射过程. 最后分析了临边界区域内颗粒力链网络在反射前后的变化. 该研究将为超材料设计提供借鉴.   相似文献   

20.
Dilation and breakage energy dissipation of four different granular soils are investigated by using an energy balance equation. Due to particle breakage, the dilation curve does not necessarily pass through the origin of coordinates. Breakage energy dissipation is found to increase significantly at the initial loading stage and then gradually become sta-bilised. The incremental dissipation ratio between breakage energy and plastic work exhibits almost independence of the confining pressure. Accordingly, a plastic flow rule consid-ering the effect of particle breakage is suggested. The critical state friction angle is found to be a combination of the basic friction between particles and the friction contributed by par-ticle breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号