首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
燃烧室两相流场亚网格燃烧模型的研究   总被引:2,自引:0,他引:2  
在三维任意曲线坐标系下采用不同的亚网格燃烧模型对环形燃烧室火焰筒气液两相湍流瞬态反应流进行大涡模拟.计算中所采用的数学度模型有:k方程亚网格尺度模型估算亚网格湍流黏性;热通量辐射模型估算辐射换热,分别采用亚网格EBU燃烧模型(E-A model)、亚网格二阶矩输运方程模型(SOM)和亚网格二阶矩代数模型(SOM-A)估算化学反应速率.并在非交错网格系统下气相采用SIMPLE算法和混合差分格式求解,液相采用Lagrange处理,并用PSIC算法对其进行求解.通过实验结果和计算结果的比较,表明在三维任意曲线坐标系下对燃烧室火焰简两相湍流油雾燃烧流场进行大涡模拟,3种不同的亚网格燃烧模型都能真实反映两相湍流化学反应流流动及实际燃烧过程,而采用亚网格二阶矩输运方程模型稍优于其他两种亚网格燃烧模型.  相似文献   

2.
多级轴流压气机叶栅内三维紊流流场的数值模拟   总被引:1,自引:0,他引:1  
对多级轴流压气机叶栅内三维紊流流场进行数值模拟,采用高精度高分辨率的三阶ENN格式以保证对激波的捕捉和对紊流特征的正确模拟,利用LU-SGS隐式解法提高了计算速度,从而构成了一种既准确又高效的多级跨声速轴流压气机紊流流动数值求解系统。重点研究了动静网格的交接方法及相应的动静交接面处理模型。计算了某带进口导叶的三级轴流压气机,计算结果与实验数据吻合较好。  相似文献   

3.
为了深入了解湍流流动机理以及湍流拟序结构发现过程的影响因素,本文采用大涡模拟方法对不同入口射流伴流速度比的平面湍射流流动进行了数值模拟。采用分步投影法求解动量方程,亚格子项采用标准Smagorinsky亚格子模式模拟,压力泊松方程采用修正的循环消去法快速求解,空间方程采用二阶精度的差分格式,在时间方向上采用二阶精度的显式差分格式。模拟结果给出了平面射流中湍流拟序结构的瞬态发展演变过程,分析了入口速度比对射流拟序结构发展演化过程及宏观流场形态的影响。为进一步研究射流拟序结构及其在湍流流动中的作用提供了基础。  相似文献   

4.
非正交网格控制容积法分析复杂形状池内的流动   总被引:1,自引:0,他引:1  
介绍一种基于非正交网格控制容积法的数学模型,及其在圆形沉沙池流动研究中的应用.该模型求解轴对称流动的连续方程及时均N-S方程,并采用标准k-ε紊流模型,模拟圆形池内的流动.由于采用非正交网格,此计算模型可精确模拟几何形状较复杂的沉沙池内的流动,利用上述模型对某实际沉沙池进行了流场计算,计算所得流场与模型试验实测值符合良好.  相似文献   

5.
为了研究节水水嘴起泡器内部两相流的流动规律,采用Fluent软件对其内部流场进行数值模拟.根据起泡器内部流场的流动特性,采用欧拉两相流模型以及RNG(re—normalization group)κ-ε湍流模型,分析起泡器出口截面气液两相体积分数和速度的分布特点.结果表明:增大入口水流速度可以加快分散出口截面气液两相的分布,缩短流体流动的稳定时间;整流网具有分散流体,降低流速的作用;错开整流网相邻层之间的网格可以改善出口截面的液相分布;本模型中整流网采用三层网格达到较好的出水效果.  相似文献   

6.
基于近壁定常剪切应力假设,提出了一种新的适用于浸入边界法的大涡模拟紊流壁面模型。通过引入壁面滑移速度,修正了线性速度剖面计算得到的壁面剪切应力,使之满足Werner-Wengle模型。将其应用于平板紊流和高Re数圆管紊流的数值模拟,对比采用和不采用壁面模型的结果得知,采用此模型的速度剖面与实验值吻合良好,验证了此模型的有效性。研究了不同欧拉/拉格朗日网格相对位置对结果的影响,证明了此模型具有较好的鲁棒性,以及可根据局部流动状态和网格精度自动开闭的特点。  相似文献   

7.
张庄 《力学学报》1994,26(4):483-487
介绍一种基于非正交网格控制容积法的数学模型,及其在圆形沉沙池流动研究中的应用.该模型求解轴对称流动的连续方程及时均N-S方程,并采用标准k-ε紊流模型,模拟圆形池内的流动.由于采用非正交网格,此计算模型可精确模拟几何形状较复杂的沉沙池内的流动,利用上述模型对某实际沉沙池进行了流场计算,计算所得流场与模型试验实测值符合良好.  相似文献   

8.
本文运用流体双折射的实验数据与数值差分计算的杂交法对模拟二尖瓣模型的二维稳态流场进行定量计算,得到流场的流函数、速度等流场参量。  相似文献   

9.
非结构混合网格高超声速绕流与磁场干扰数值模拟   总被引:2,自引:0,他引:2  
对均匀磁场干扰下的二维钝头体无粘高超声速流场进行了基于非结构混合网格的数值模拟.受磁流体力学方程组高度非线性的影响及考虑到数值模拟格式的精度,目前在此类流场的数值模拟中大多使用结构网格及有限差分方法,因而在三维复杂外形及复杂流场方面的研究受到限制.本文主要探索使用非结构网格(含混合网格)技术时的数值模拟方法.控制方程为耦合了Maxwell方程及无粘流体力学方程的磁流体力学方程组,数值离散格式采用Jameson有限体积格心格式,5步Runge-Kutta显式时间推进.计算模型为二维钝头体,初始磁场均匀分布.对不同磁感应强度影响下的高超声速流场进行了数值模拟,并与有限的资料进行了对比,得到了较符合的结果.  相似文献   

10.
田北晨  李林敏  陈杰  黄彪  曹军伟 《力学学报》2022,54(6):1557-1571
空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.   相似文献   

11.
大涡模拟及其在湍流燃烧中的应用   总被引:10,自引:0,他引:10  
大涡模拟作为一种研究湍流流动和湍流燃烧的有效手段,在国际上已经得到广泛应用。本文在回顾了大涡模拟(LES)的基本思想及其实施方法的基础上着重介绍了前人在大涡模拟的亚格子湍流模式和亚格子燃烧模式中的研究成果,同时给出了采用不同亚格子模式的大涡模拟在湍流燃烧中的应用实例,指出了大涡模拟在湍流燃烧中的重要作用,为大涡模拟的进一步发展和应用提供参考。   相似文献   

12.
Influence of finite difference schemes and subgrid‐stress models on the large eddy simulation calculation of turbulent flow around a bluff body of square cylinder at a laboratory Reynolds number, has been examined. It is found that the type and the order of accuracy of finite‐difference schemes and the subgrid‐stress model for satisfactory results are dependent on each other, and the grid resolution and the Reynolds number. Using computational grids manageable by workstation‐level computers, with which the near‐wall region of the separating boundary layer cannot be resolved, central‐difference schemes of realistic orders of accuracy, either fully conservative or non‐conservative, suffer stability problems. The upwind‐biased schemes of third order and the Smagorinsky eddy‐viscosity subgrid model can give reasonable results resolving much of the energy‐containing turbulent eddies in the boundary layers and in the wake and representing the subgrid stresses in most parts of the flow. Noticeable improvements can be obtained by either using higher order difference schemes, increasing the grid resolution and/or by implementing a dynamic subgrid stress model, but each at a cost of increased computational time. For further improvements, the very small‐scale eddies near the upstream corners and in the laminar sublayers need to be resolved but would require a substantially larger number of grid points that are out of the range of easily accessible computers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A large eddy simulation (LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model and the Lagrangian dynamic subgrid-scale model are employed and tested. The calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structures behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent behavior behind the flame holder is analyzed by visualizing the sectional views of vortical structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

15.
This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.  相似文献   

16.
A large eddy simulation based on filtered vorticity transport equation has been coupled with filtered probability density function transport equation for scalar field, to predict the velocity and passive scalar fields. The filtered vorticity transport has been formulated using diffusion‐velocity method and then solved using the vortex method. The methodology has been tested on a spatially growing mixing layer using the two‐dimensional vortex‐in‐cell method in conjunction with both Smagorinsky and dynamic eddy viscosity subgrid scale models for an anisotropic flow. The transport equation for filtered probability density function is solved using the Lagrangian Monte‐Carlo method. The unresolved subgrid scale convective term in filtered density function transport is modelled using the gradient diffusion model. The unresolved subgrid scale mixing term is modelled using the modified Curl model. The effects of subgrid scale models on the vorticity contours, mean streamwise velocity profiles, root‐mean‐square velocity and vorticity fluctuations profiles and negative cross‐stream correlations are discussed. Also the characteristics of the passive scalar, i.e. mean concentration profiles, root‐mean‐square concentration fluctuations profiles and filtered probability density function are presented and compared with previous experimental and numerical works. The sensitivity of the results to the Schmidt number, constant in mixing frequency and inflow boundary conditions are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A linear eddy model for subgrid mixing and combustion has been coupled to a large eddy simulation of the turbulent nonpremixed piloted jet flame (Sandia Flame D). For the combustion reaction, simplified, single-step, irreversible, Arrhenius kinetics are used. The large scale and the subgrid structure of the flow are compared with experimental observations and, where appropriate, with a flamelet model of the flame. The main objective of this work is to demonstrate the feasibility of the LES-LEM approach for determining the structure of the subgrid scalar dissipation rate and the turbulence-chemistry interactions. The results for the large- and subgrid-scale structure of the flow show a reasonable agreement with the experimental observations.  相似文献   

18.
19.
In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.  相似文献   

20.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号