首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A supersonic (Mach~2–3), radiatively cooled plasma jet is produced by the ablation of aluminium plasma from a radial foil, a disc subjected to a ~1.4 MA, 250 ns current from the MAGPIE pulsed-power generator. The ablated plasma converges on axis, producing a steady and collimated jet with axial velocities reaching ~100 km/s. The study of jet-ambient interactions is achieved by introducing a neutral gas above the foil using a fast valve with a supersonic gas nozzle. The system has flexibility to study different interaction geometries in order to vary critical dimensionless parameters for astrophysical studies. In particular the effects of radiative cooling on the working surface of the jet are strongly affected by varying the gas composition. Experimental results are compared to numerical simulations using the 3-D MHD code GORGON.  相似文献   

2.
In this paper a dimensionless parameter is defined which allows the prediction of the thermodynamic state in the field-free plasma jet of D. C. operated plasma torches of various designs. This dimensionless parameterP is derived from the conservation equations applied to a two-step temperature and velocity model and contains only quantities which can be experimentally determined without using sophisticated equipment. Critical values ofP based on a critical electron density of 1016 cm?3 have been calculated for argon, hydrogen, nitrogen, oxygen, and helium and corresponding values of Pcrit have been determined experimentally for two different D. C. operated argon plasma torches using various diagnostic techniques. The experimental values corroborate the assumptions made for the calculation of Pcrit. ForP < Pcrit, substantial deviations from the local thermodynamic equilibrium (LTE) may occur.  相似文献   

3.
The electrical and atomization performance of a plane?Cplane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35?bar corresponding to injection velocities of up to 50?m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15?C35?bar range, and an arithmetic mean diameter D 10 as low as 0.2d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460?C469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q v?~?2?C/m3 cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number (We j) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q v?~?6?C/m3, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that ??turbulent?? primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets.  相似文献   

4.
This paper presents results of an experimental study investigating the mean and temporal evolution of flow within the pore space of a packed bed overlain by a free-surface flow. Data were collected by an endoscopic PIV (EPIV) technique. EPIV allows the instantaneous velocity field within the pore space to be quantified at a high spatio-temporal resolution, thus permitting investigation of the structure of turbulent subsurface flow produced by a high Reynolds number freestream flow (Re s in the range 9.8?×?103?C9.7?×?104). Evolution of coherent flow structures within the pore space is shown to be driven by jet flow, with the interaction of this jet with the pore flow generating distinct coherent flow structures. The effects of freestream water depth, Reynolds and Froude numbers are investigated.  相似文献   

5.
The effect of incident shock wave strength on the decay of interface introduced perturbations in the refracted shock wave was studied by performing 20 different simulations with varying incident shock wave Mach numbers (M ~ 1.1? 3.5). The analysis showed that the amplitude decay can be represented as a power law model shown in Eq.7, where A is the average amplitude of perturbations (cm), B is the base constant (cm?(E?1), S is the distance travelled by the refracted shockwave (cm), and E is the power constant. The proposed model fits the data well for low incident Mach numbers, while at higher mach numbers the presence of large and irregular late time oscillations of the perturbation amplitude makes it hard for the power law to fit as effectively. When the coefficients from the power law decay model are plotted versus Mach number, a distinct transition region can be seen. This region is likely to result from the transition of the post-shock heavy gas velocity from subsonic to supersonic range in the lab frame. This region separates the data into a high and low Mach number region. Correlations for the power law coefficients to the incident shock Mach number are reported for the high and low Mach number regions. It is shown that perturbations in the refracted shock wave persist even at late times for high incident Mach numbers.  相似文献   

6.
In the present study, the characteristics of supersonic rectangular microjets are investigated experimentally using molecular tagging velocimetry. The jets are discharged from a convergent–divergent rectangular nozzle whose exit height is 500 μm. The jet Mach number is set to 2.0 for all tested jets, and the Reynolds number Re is altered from 154 to 5,560 by changing the stagnation pressure. The experimental results reveal that jet velocity decays principally due to abrupt jet spreading caused by jet instability for relatively high Reynolds numbers (Re > ~450). The results also reveal that the jet rapidly decelerates to a subsonic speed near the nozzle exit for a low Reynolds number (Re = 154), although the jet does not spread abruptly; i.e., a transition in velocity decay processes occurs as the Reynolds number decreases. A supersonic core length is estimated from the streamwise distribution of the centerline velocity, and the length is then normalized by the nozzle exit height and plotted against the Reynolds number. As a result, it is found that the normalized supersonic core length attains a maximum value at a certain Reynolds number near which the transition in the velocity decay process occurs.  相似文献   

7.
We performed an experimental investigation of the flowfield of a transverse jet into supersonic flow with a pseudo-shock wave (PSW). In this study, we injected compressed air as the injectant, simulating hydrocarbon fuel. A back pressure control valve generated PSW into Mach 2.5 supersonic flow and controlled its position. The positions of PSW were set at nondimensional distance from the injector by the duct height (x/H) of ?1.0, ?2.5, and ?4.0. Particle image velocimetry (PIV) gave us the velocity of the flowfield. Mie scattering of oil mist only with the jet was used to measure the spread of the injectant. Furthermore, gas sampling measurements at the exit of the test section were carried out to determine the injectant mole fraction distributions. Gas sampling data qualitatively matched the intensity of Mie scattering. PIV measurements indicated that far-upstream PSW decelerated the flow speed of the main stream and developed the boundary layer on the wall of the test section. The flow speed deceleration at the corner of the test section was remarkable. The PSW produced nonuniformity in the main stream and reduced the momentum flux of the main stream in front of the injector. The blowing ratio, defined as the square root of the momentum flux ratio, of the jet and the main stream considering the effect of the boundary layer thickness was shown to be a useful parameter to explain the jet behavior.  相似文献   

8.
An investigation is made into the influence of the Mach number and the viscosity on the flow in the neighborhood of the trailing edge of a plate. The Mach number is assumed to satisfy m 2 ? 1 = 0(R?l/5), which corresponds to the regime of transonic interaction. It is shown that if the Mach number is such that ¦M 2 ? 1¦ > O(R?1/5) the problem in the region of free interaction can be reduced by an appropriate transformation to the already known solutions for an incompressible fluid [5] and supersonic flow [7].  相似文献   

9.
Results of an experimental study and numerical simulation of self-oscillations of a supersonic radial jet exhausting from a plane radial nozzle into an ambient space are reported. It is demonstrated that flexural oscillations develop in the jet, leading to its destruction. Feedback ensured by acoustic waves in the gas surrounding the supersonic jet is found to play a key role in the emergence of self-oscillations.  相似文献   

10.
The current work experimentally investigates the flow characteristics of an air jet impinging on an open rotor-stator system with a low non-dimensional spacing, G?=?0.02, and with a very low aspect ratio, e/D?=?0.25. The rotational Reynolds numbers varied from $0.33\times10^5$ to $5.32\times10^5$ , while the jet Reynolds numbers ranged from 17.2?×?103 to 43?×?103. Particle image velocimetry (PIV) measurements were taken along the entire disk diameter in three axial planes. From the obtained PIV velocity fields, the flow statistics were computed. A recirculation flow region, which was centered at the impingement point and possessed high turbulence intensities, was observed. Local peaks in root-mean-square fluctuating velocity distributions appeared in the recirculation region and near the periphery, respectively. Proper orthogonal decomposition analysis was applied to the cases of the jet impinging on the rotor with and without rotation to reveal the coherent structures in the jet region.  相似文献   

11.
A mass–spectrometric study of the condensation of pure Ar and a 5% SiH4 + 95% Ar mixture in a supersonic pulse free jet in a broad interval of stagnation pressures is performed. It is shown that a small content of monosilane in argon leads to the fact that condensation in the mixture begins at lower stagnation pressures than in pure argon; at high stagnation pressures, mixed argon—silane complexes are formed in the flow. The sequence of the stages of cluster formation in the mixture is determined.  相似文献   

12.
A three-dimensional supersonic turbulent flow with symmetric normal injection of circular jets from the channel walls is numerically simulated. The initial Favre-averaged Navier–Stokes equations closed by the kω turbulence model are solved by an algorithm based on an ENO scheme. The mechanism of the formation of vortical structures due to the interaction of the jet with the free stream is studied for jet to crossflow total pressure ratios ranging from 3 to 50. It is known from experiments reported in the literature that, for n ? 10, mixing of the jet with the high-velocity flow leads to the formation of a pair of vortices and of an additional separation zone near the wall behind the jet. It is demonstrated that the present numerical results are consistent with such findings and that the pressure distribution on the wall ahead of the jet in the plane of symmetry is also in reasonable agreement with available experimental data.  相似文献   

13.
Round air jet development downstream from an abrupt contraction coupled to a uniform circular tube extension with length to diameter ratio L/D?=?1.2 and L/D?=?53.2 is studied experimentally. Smoke visualisation and systematic hot film velocity measurements are performed for low to moderate Reynolds numbers 1130?<?Re b ?<?11320. Mean and turbulent velocity profiles are quantified at the tube exit and along the centerline from the tube exit down to 20 times the diameter D. Flow development is seen to be determined by the underlying jet structure at the tube exit which depends on Reynolds number, initial velocity statistics at the tube exit and the presence/absence of coherent structures. It is shown that the tube extension ratio L/D as well as the sharp edged abrupt contraction influence the initial jet structure at the tube exit. For both L/D ratios, the presence of the abrupt contraction results in transitional jet flow in the range 2000?<?Re b ?<?4000 and in flow features associated with forced jets and high Reynolds numbers Re b ?>?104. The tube extension ratio L/D downstream from the abrupt contraction determines the shear layer roll up so that for L/D?=?1.2 flow visualisation suggests the occurrence of toroidal vortices for Re b ?<?4000 whereas helical vortices are associated with the transitional regime for L/D?=?53.2. Found flow features are compared to features reported in literature for smooth contraction nozzles and long pipe flow.  相似文献   

14.
The planning and conducting of physical experiments requires the development of theoretical models capable either of predicting possible experimental data or explaining those already obtained. The processes taking place in the physical world can be understood only in terms of the close interaction between theory and experiment. Developing any quantitative or qualitative model of a physical phenomenon requires a mathematical apparatus, on the basis of which such models can be constructed. The branch of theoretical science using the methods of magnetohydrodynamics and hydroaeromechanics for studying space physics problems is usually called cosmic gasdynamics; it is mostly used in developing models of physical phenomena occurring under space conditions. In order to emphasize the importance of cosmic gasdynamics in the development of astrophysics and space research, we will present several examples of models constructed by aerodynamicists. These models not only played an important role in qualitative predictions but are still being developed due to the need for the quantitative interpretation of the experimental data. The solar corona was long thought to be a formation in a state of gravitational equilibrium (Chapman model). However, it turned out that the pressure at infinity obtained on the basis of this equilibrium solution is considerably greater than the estimated pressure in the interstellar gas surrounding the solar corona. In [1] it was concluded that in this case the solar corona gas must expand and a solution describing this expansion was obtained by invoking the steady-state hydrodynamics equations in the spherically-symmetric approximation. The solution of these equations led to the theoretical prediction of the solar wind, a radial flow of fully ionized hydrogen plasma issuing from the solar corona at a low subsonic velocity but already hypersonic at the Earth’s orbit. Subsonic-to-supersonic transition is ensured by solar gravitation which in this case plays the role of a convergent-divergent nozzle. Within a year, the theoretical prediction of the solar wind [1] was confirmed by its experimental detection [2] onboard the Soviet spacecraft Luna-2. It turned out that at the Earth’s orbit the mean velocity of the solar wind V E ≈ 450 km·s?1, the mean proton temperature T E ≈ 6 · 104 K (the electron temperature is somewhat higher), and the mean concentration of protons (and electrons) n E ≈ 10 cm?3. The first hydrodynamic model of the supersonic solar-wind flow past the Earth’s magnetosphere [3] was only qualitative, since it considered a flow past a plane magnetic dipole in the approximation of a thin layer between the bow shock and an “obstacle” embedded in the flow. However, it was constructed before the actual discovery of the solar wind and provided further important impetus to the development of models of the supersonic solar wind flow past planets with a detached shock. One more example is furnished by the gasdynamicmodel of the solar wind flow past cometary atmospheres, first suggested in In this work, a model of the interaction between the supersonic solar wind and the supersonic flow of the local, i.e., surrounding the Sun, interstellar medium is considered; it was first suggested in [6] in a much simplified formulation. This model has been actively developed in connection with the flights of the spacecraft Voyager 1 and 2, Ulysses, Hubble Space Telescope, SOHO, and others, exploring the outer regions of the solar system.  相似文献   

15.
A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d?λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).  相似文献   

16.
The ion composition of a plasma flow obtained by intense irradiation of a solid target is determined by methods of probing diagnostics and measuring the secondary emission rate. As the ions fly through a dense gas jet, C 5+ ions are found to recharge to C 4+ ions and then to C 3+ ions. The fraction of high-charge ions in the initial plasma flow and their concentration in the region of interaction with the jet are calculated. The concentration of atoms in the gas jet is estimated on the basis of the integral change in the charge value. Results necessary for analyzing the conditions of experiments on effective charge-transfer pumping and laser generation in the far ultraviolet spectral range are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 36–43, May–June, 2009.  相似文献   

17.
The results of numerical integration of the Euler equations governing two-dimensional and axisymmetric flows of an ideal (inviscid and non-heat-conducting) gas with local supersonic zones are presented. The subject of the study is the formation of shocks closing local supersonic zones. The flow in the vicinity of the initial point of the closing shock is calculated on embedded, successively refined grids with an accuracy much greater than that previously achieved. The calculations performed, together with the analysis of certain controversial issues, leave no doubt that it is the intersection of C ?-characteristics proceeding from the sonic line inside the supersonic zone that is responsible for the closing shock formation.  相似文献   

18.
The results of the experimental investigation of supersonic turbulent jets with local subsonic zones of forward and reverse flow exhausting into the ambient atmosphere or an outer stream, either parallel or transverse to the jet, are presented. Some gasdynamic features of the flows containing these zones, which have not been adequately addressed in the literature, are analyzed. Thus, supersonic flows with back pressure, e.g., highly overexpanded and underexpanded jet flows, and those upstream and downstream of a jet on the leeward side of a cone in a supersonic gas stream, are studied. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 143–150, January–February, 1998.  相似文献   

19.
Exhaustion of supersonic argon and nitrogen jets through sonic and supersonic nozzles into a rarefied submerged space at high stagnation pressures is studied experimentally. The shapes and lengths of the jets are visualized by means of detecting radiation excited in the considered flow by an electron beam. Dependences of the geometric parameters of the jets on exhaustion and clusterization conditions at low Reynolds numbers based on the reference length of the jet are obtained. It is found that the coefficient of proportionality between the length of the first “barrel” of the supersonic jet and the degree of jet expansion increases with an increase in the stagnation pressure. Empirical dependences of the proportionality coefficient on the size of clusters formed in supersonic flows are derived for the first time.  相似文献   

20.
The aim of this work is to produce and study a high energy density laboratory plasma relevant to astrophysical accretion disks. To this end, an experimental setup based on a modified cylindrical wire array was devised, which employs a cusp magnetic field to introduce angular momentum into the system. The setup was studied numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. Simulations show that a differentially-rotating flow is formed, with typical rotation velocity and Mach number values of 60 km/s and Mφ ~ 5 respectively. The plasma is radiatively cooled and presents a Reynolds number higher than 107. In addition, the magnetic Reynolds number and the plasma β are >1. Such a plasma is of interest for the study of hydrodynamic and magneto-hydrodynamic instabilities, and turbulence generation in differentially-rotating plasma flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号