首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We present a new reference smoothness indicator for third‐order weighted essentially non‐oscillatory scheme to recover its design‐order convergence at critical points. This reference smoothness indicator, which involves both the candidate and global smoothness indicators in the weighted essentially non‐oscillatory framework, is devised according to a sufficient condition on the weights for third‐order convergence. The recovery of design‐order is verified by standard tests. Meanwhile, numerical results demonstrate that the present reference smoothness indicator produces sharper representation of the discontinuity owing to the combined effects of larger weight assignment to the discontinuous stencils and convergence rate recovery. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A new hybrid scheme is proposed, which combines the improved third‐order weighted essentially non‐oscillatory (WENO) scheme presented in this paper with a fourth‐order central scheme by a novel switch. Two major steps have been gone through for the construction of a high‐performance and stable hybrid scheme. Firstly, to enhance the WENO part of the hybrid scheme, a new reference smoothness indicator has been devised, which, combined with the nonlinear weighting procedure of WENO‐Z, can drive the third‐order WENO toward the optimal linear scheme faster. Secondly, to improve the hybridization with the central scheme, a hyperbolic tangent hybridization switch and its efficient polynomial counterpart are devised, with which we are able to fix the threshold value introduced by the hybridization. The new hybrid scheme is thus formulated, and a set of benchmark problems have been tested to verify the performance enhancement. Numerical results demonstrate that the new hybrid scheme achieves excellent performance in resolving complex flow features, even compared with the fifth‐order classical WENO scheme and WENO‐Z scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The classical third-order weighted essentially nonoscillatory (WENO) scheme is notoriously dissipative as it loses the optimal order of accuracy at critical points and its two-point finite difference in the smoothness indicators is unable to differentiate the critical point from the discontinuity. In recent years, modifications to the smoothness indicators and weights of the classical third-order WENO scheme have been reported to reduce numerical dissipation. This article presents a new reference smoothness indicator for constructing a low-dissipation third-order WENO scheme. The new reference smoothness indicator is a nonlinear combination of the local and global stencil smoothness indicators. The resulting WENO-Rp3 scheme with the power parameter p=1.5 achieves third-order accuracy in smooth regions including critical points and has low dissipation, but numerical results show this scheme cannot keep the ENO property near discontinuities. The recommended WENO-R3 scheme (p=1) keeps the ENO property and performs better than several recently developed third-order WENO schemes.  相似文献   

4.
Numerical experiments with several variants of the original weighted essentially non‐oscillatory (WENO) schemes (J. Comput. Phys. 1996; 126 :202–228) including anti‐diffusive flux corrections, the mapped WENO scheme, and modified smoothness indicator are tested for the Euler equations. The TVD Runge–Kutta explicit time‐integrating scheme is adopted for unsteady flow computations and lower–upper symmetric‐Gauss–Seidel (LU‐SGS) implicit method is employed for the computation of steady‐state solutions. A numerical flux of the variant WENO scheme in flux limiter form is presented, which consists of first‐order and high‐order fluxes and allows for a more flexible choice of low‐order schemes. Computations of unsteady oblique shock wave diffraction over a wedge and steady transonic flows over NACA 0012 and RAE 2822 airfoils are presented to test and compare the methods. Various aspects of the variant WENO methods including contact discontinuity sharpening and steady‐state convergence rate are examined. By using the WENO scheme with anti‐diffusive flux corrections, the present solutions indicate that good convergence rate can be achieved and high‐order accuracy is maintained and contact discontinuities are sharpened markedly as compared with the original WENO schemes on the same meshes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A new third‐order WENO scheme is proposed to achieve the desired order of convergence at the critical points for scalar hyperbolic equations. A new reference smoothness indicator is introduced, which satisfies the sufficient condition on the weights for the third‐order convergence. Following the truncation error analysis, we have shown that the proposed scheme achieves the desired order accurate for smooth solutions with arbitrary number of vanishing derivatives if the parameter ε satisfies certain conditions. We have made a comparative study of the proposed scheme with the existing schemes such as WENO‐JS, WENO‐Z, and WENO‐N3 through different numerical examples. The result shows that the proposed scheme (WENO‐MN3) achieves better performance than these schemes.  相似文献   

6.
In this article, we present an improved third-order finite difference weighted essentially nonoscillatory (WENO) scheme to promote the order of convergence at critical points for the hyperbolic conservation laws. The improved WENO scheme is an extension of WENO-ZQ scheme. However, the global smoothness indicator has a little different from WENO-ZQ scheme. In this follow-up article, a convex combination of a second-degree polynomial with two linear polynomials in a traditional WENO fashion is used to compute the numerical flux at cell boundary. Although the same three-point information is adopted by the improved third-order WENO scheme, the truncation errors are smaller than some other third-order WENO schemes in L and L2 norms. Especially, the convergence order is not declined at critical points, where the first and second derivatives vanish but not the third derivative. At last, the behavior of improved scheme is proved on a variety of one- and two-dimensional standard numerical examples. Numerical results demonstrate that the proposed scheme gives better performance in comparison with other third-order WENO schemes.  相似文献   

7.
The local smoothness indicators play an important role in the performance of a weighted essentially nonoscillatory (WENO) scheme. Due to having only 2 points available on each substencil, the local smoothness indicators calculated by conventional methods make the third‐order WENO scheme too dissipative. In this paper, we propose a different method to calculate the indicators by using all the 3 points on the global stencil of the third‐order WENO scheme. The numerical results demonstrate that the WENO scheme with the new indicators has less dissipation and better resolution than the conventional third‐order WENO scheme of Jiang and Shu for both smooth and discontinuous solutions.  相似文献   

8.
This paper proposes WCNS‐CU‐Z, a weighted compact nonlinear scheme, that incorporates adapted central difference and low‐dissipative weights together with concepts of the adaptive central‐upwind sixth‐order weighted essentially non‐oscillatory scheme (WENO‐CU) and WENO‐Z schemes. The newly developed WCNS‐CU‐Z is a high‐resolution scheme, because interpolation of this scheme employs a central stencil constructed by upwind and downwind stencils. The smoothness indicator of the downwind stencil is calculated using the entire central stencil, and the downwind stencil is stopped around the discontinuity for stability. Moreover, interpolation of the sixth‐order WCNS‐CU‐Z exhibits sufficient accuracy in the smooth region through use of low‐dissipative weights. The sixth‐order WCNS‐CU‐Zs are implemented with a robust linear difference formulation (R‐WCNS‐CU6‐Z), and the resolution and robustness of this scheme were evaluated. These evaluations showed that R‐WCNS‐CU6‐Z is capable of achieving a higher resolution than the seventh‐order classical robust weighted compact nonlinear scheme and can provide a crisp result in terms of discontinuity. Among the schemes tested, R‐WCNS‐CU6‐Z has been shown to be robust, and variable interpolation type R‐WCNS‐CU6‐Z (R‐WCNS‐CU6‐Z‐V) provides a stable computation by modifying the first‐order interpolation when negative density or negative pressure arises after nonlinear interpolation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an efficient procedure for overcoming the deficiency of weighted essentially non‐oscillatory schemes near discontinuities. Through a thorough incorporation of smoothness indicators into the weights definition, up to ninth‐order accurate multistep methods are devised, providing weighted essentially non‐oscillatory schemes with enhanced order of convergence at transition points from smooth regions to a discontinuity, while maintaining stability and the essentially non‐oscillatory behavior. We also provide a detailed analysis of the resolution power and show that the solution enhancements of the new method at smooth regions come from their ability to render smoothness indicators closer to uniformity. The new scheme exhibits similar fidelity as other multistep schemes; however, with superior characteristics in terms of robustness and efficiency, as no logical statements or mapping function is needed. Extensions to higher orders of accuracy present no extra complexity. Numerical solutions of linear advection problems and nonlinear hyperbolic conservation laws are used to demonstrate the scheme's improved behavior for shock‐capturing problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The calculation of the weight of each substencil is very important for a weighted essentially nonoscillatory (WENO) scheme to obtain high‐order accuracy in smooth regions and keep the essentially nonoscillatory property near discontinuities. The weighting function introduced in the WENO‐Z scheme provides a straightforward method to analyze the accuracy order in smooth regions. In this paper, we construct a new sixth‐order global smoothness indicator (GSI‐6) and a function about GSI‐6 and the local smoothness indicators (ISk) to calculate the weights. The analysis and numerical results show that, with the new weights, the scheme satisfies the sufficient condition for the fifth‐order convergence in smooth regions even at critical points. Meanwhile, it can also maintain low dissipation for discontinuous solutions due to relative large weights assigned to discontinuous substencils.  相似文献   

11.
In this article, we present two improved third‐order weighted essentially nonoscillatory (WENO) schemes for recovering their design‐order near first‐order critical points. The schemes are constructed in the framework of third‐order WENO‐Z scheme. Two new global smoothness indicators, τL3 and τL4, are devised by a nonlinear combination of local smoothness indicators (ISk) and reference values (ISG) based on Lagrangian interpolation polynomial. The performances of the proposed schemes are evaluated on several numerical tests governed by one‐dimensional linear advection equation or one‐ and two‐dimensional Euler equations. Numerical results indicate that the presented schemes provide less dissipation and higher resolution than the original WENO3‐JS and subsequent WENO3‐N scheme.  相似文献   

12.
Numerical oscillation has been an open problem for high‐order numerical methods with increased local degrees of freedom (DOFs). Current strategies mainly follow the limiting projections derived originally for conventional finite volume methods and thus are not able to make full use of the sub‐cell information available in the local high‐order reconstructions. This paper presents a novel algorithm that introduces a nodal value‐based weighted essentially non‐oscillatory limiter for constrained interpolation profile/multi‐moment finite volume method (CIP/MM FVM) (Ii and Xiao, J. Comput. Phys., 222 (2007), 849–871) as an effort to pursue a better suited formulation to implement the limiting projection in schemes with local DOFs. The new scheme, CIP‐CSL‐WENO4 scheme, extends the CIP/MM FVM method by limiting the slope constraint in the interpolation function using the weighted essentially non‐oscillatory (WENO) reconstruction that makes use of the sub‐cell information available from the local DOFs and is built from the point values at the solution points within three neighboring cells, thus resulting a more compact WENO stencil. The proposed WENO limiter matches well the original CIP/MM FVM, which leads to a new scheme of high accuracy, algorithmic simplicity, and computational efficiency. We present the numerical results of benchmark tests for both scalar and Euler conservation laws to manifest the fourth‐order accuracy and oscillation‐suppressing property of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the results of the linear stability analysis of the finite‐difference weighted essentially non‐oscillatory (WENO) schemes with optimal weights. The standard WENO schemes between the third and 11th order, the order‐optimised WENO schemes of the sixth and eighth order and the bandwidth‐optimised WENO schemes of the third and fourth order are considered. Several explicit Runge–Kutta schemes including the recently published strong stability‐preserving explicit Runge–Kutta schemes are considered for time discretisation. The stability limits as well as dissipation and dispersion properties dependent on the Courant–Friedrichs–Lewy number are presented for a hyperbolic model equation. The different combinations of space and time discretisation schemes are compared in terms of their accuracy and efficiency. For a parabolic model equation, the viscous term is discretised with high‐order central differences. The stability limits for the parabolic problem are presented as well. Numerical results of linear test cases are shown. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
加权型紧致格式与加权本质无波动格式的比较   总被引:3,自引:3,他引:0  
张树海 《力学学报》2016,48(2):336-347
线性紧致格式和加权本质无波动格式是两种典型的高阶精度数值格式,它们各有优缺点.线性紧致格式在具有高阶精度的同时,格式的分辨率也比较高,耗散低,是计算多尺度流场结构的较好格式,但是不能计算具有强激波的流场.加权本质无波动格式是一种高阶精度捕捉激波格式,鲁棒性好,但耗散比较高,分辨率也不理想.近年来,在莱勒的线性紧致格式基础上,采用加权本质无波动格式捕捉激波思想,发展了一系列加权型紧致格式.本文较全面地比较了加权型紧致格式和加权本质无波动格式,包括构造方法、鲁棒性、分辨率、耗散特性、收敛特性以及并行计算效率.结果表明,现有的加权型紧致格式基本保持了加权本质无波动格式的性质,对于气动力等宏观量的计算,比加权本质无波动格式没有明显的优势.   相似文献   

15.
This article presents an improved fifth-order finite difference weighted essentially nonoscillatory (WENO) scheme to solve Hamilton-Jacobi equations. A new type of nonlinear weights is introduced with the construction of local smoothness indicators on each local stencil that are measured with the help of generalized undivided differences in L1-norm. A novel global smoothness measurement is also constructed with the help of local measurements from its linear combination. Numerical experiments are conducted in one- and two-dimensions to demonstrate the performance enhancement, resolution power, numerical accuracy for the proposed scheme, and compared it with the classical WENO scheme.  相似文献   

16.
Hybrid schemes are very efficient for complex compressible flow simulation. However, for most existing hybrid schemes in literature, empirical problem‐dependent parameters are always needed to detect shock waves and hence greatly decrease the robustness and accuracy of the hybrid scheme. In this paper, based on the nonlinear weights of the weighted essentially non‐oscillatory (WENO) scheme, a novel weighting switch function is proposed. This function approaches 1 with high‐order accuracy in smooth regions and 0 near discontinuities. Then, with the new weighting switch function, a seventh‐order hybrid compact‐reconstruction WENO scheme (HCCS) is developed. The new hybrid scheme uses the same stencil as the fifth‐order WENO scheme, and it has seventh‐order accuracy in smooth regions even at critical points. Numerical tests are presented to demonstrate the accuracy and robustness of both the switch function and HCCS. Comparisons also reveal that HCCS has lower dissipation and less computational cost than the seventh‐order WENO scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Difficulties for the conventional computational fluid dynamics and the standard lattice Boltzmann method (LBM) to study the gas oscillating patterns in a resonator have been discussed. In light of the recent progresses in the LBM world, we are now able to deal with the compressibility and non‐linear shock wave effects in the resonator. A lattice Boltzmann model for viscid compressible flows is introduced firstly. Then, the Boltzmann equation with the Bhatnagar–Gross–Krook approximation is solved by the finite‐difference method with a third‐order implicit–explicit (IMEX) Runge–Kutta scheme for time discretization, and a fifth‐order weighted essentially non‐oscillatory (WENO) scheme for space discretization. Numerical results obtained in this study agree quantitatively with both experimental data available and those using conventional numerical methods. Moreover, with the IMEX finite‐difference LBM (FDLBM), the computational convergence rate can be significantly improved compared with the previous FDLBM and standard LBM. This study can also be applied for simulating some more complex phenomena in a thermoacoustics engine. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A space and time third‐order discontinuous Galerkin method based on a Hermite weighted essentially non‐oscillatory reconstruction is presented for the unsteady compressible Euler and Navier–Stokes equations. At each time step, a lower‐upper symmetric Gauss–Seidel preconditioned generalized minimal residual solver is used to solve the systems of linear equations arising from an explicit first stage, single diagonal coefficient, diagonally implicit Runge–Kutta time integration scheme. The performance of the developed method is assessed through a variety of unsteady flow problems. Numerical results indicate that this method is able to deliver the designed third‐order accuracy of convergence in both space and time, while requiring remarkably less storage than the standard third‐order discontinous Galerkin methods, and less computing time than the lower‐order discontinous Galerkin methods to achieve the same level of temporal accuracy for computing unsteady flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
为更准确捕捉复杂流场的流动细节,通过对WENO格式的光滑因子进行改进,发展了一种新的五阶WENO格式。对三阶ENO格式进行加权可以得到五阶WENO格式,但是不同的加权处理,WENO格式在极值处保持加权基本无振荡的效果不同,本文构造了二阶精度的局部光滑因子,及不含一阶二阶导数的高阶全局光滑因子,从而实现WENO格式在极值处有五阶精度。基于改进五阶WENO格式,对一维对流方程、一维和二维可压缩无粘问题进行算例验证,并与传统WENO-JS格式和WENO-Z格式进行比较。计算结果表明,改进五阶WENO格式有较高的精度和收敛速度,有较低的数值耗散,能有效捕捉间断、激波和涡等复杂流动。  相似文献   

20.
The blood flow model maintains the steady‐state solutions, in which the flux gradients are non‐zero but exactly balanced by the source term. In this paper, we design high order finite difference weighted essentially non‐oscillatory (WENO) schemes to this model with such well‐balanced property and at the same time keeping genuine high order accuracy. Rigorous theoretical analysis as well as extensive numerical results all indicate that the resulting schemes verify high order accuracy, maintain the well‐balanced property, and keep good resolution for smooth and discontinuous solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号