首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang  Pei  Qing  Hai 《应用数学和力学(英文版)》2021,42(10):1379-1396

In this work, the static tensile and free vibration of nanorods are studied via both the strain-driven (StrainD) and stress-driven (StressD) two-phase nonlocal models with a bi-Helmholtz averaging kernel. Merely adjusting the limits of integration, the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique. The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process. In the numerical examples, the bi-Helmholtz kernel-based StrainD (or StressD) two-phase model shows consistently softening (or stiffening) effects on both the tension and the free vibration of nanorods with different boundary edges. The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.

  相似文献   

2.
Kernels for non-local elasticity are in general obtained from phonon dispersion relations. However, non-local elastic kernels are in the form of three-dimensional (3D) functions, whereas the dispersion relations are always in the form of one-dimensional (1D) frequency versus wave number curves corresponding to a particular wave direction. In this paper, an approach to build 2D and 3D kernels from 1D phonon dispersion data is presented. Our particular focus is on isotropic media where we show that kernels can be obtained using Fourier–Bessel transform, yielding axisymmetric kernel profiles in reciprocal and real spaces. These kernel functions are designed to satisfy the necessary requirements for stable wave propagation, uniformity of nonlocal stress and stress regularization. The proposed concept is demonstrated by developing some physically meaningful 2D and 3D kernels that will find useful applications in nonlocal mechanics. Relative merits of the kernels obtained via proposed methods are explored by fitting 1D kernels to dispersion data for Argon and using the kernel to understand the size effect in non local energy as seen from molecular simulations. A comparison of proposed kernels is made based on their predictions of stress field around a crack tip singularity.  相似文献   

3.
This paper develops a gradient theory of single-crystal plasticity based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become nonlocal flow rules for the individual slip systems in the form of partial differential equations requiring boundary conditions. Central ingredients in the theory are geometrically necessary edge and screw dislocations together with a free energy that accounts for work hardening through a dependence on the accumulation of geometrically necessary dislocations.  相似文献   

4.
This paper develops a finite-deformation, gradient theory of single crystal plasticity. The theory is based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become flow rules for the individual slip systems. Because these flow rules are in the form of partial differential equations requiring boundary conditions, they are nonlocal. The chief new ingredient in the theory is a free energy dependent on (geometrically necessary) edge and screw dislocation-densities as introduced in Gurtin [Gurtin, 2006. The Burgers vector and the flow of screw and edge dislocations in finite-deformation plasticity. Journal of Mechanics and Physics of Solids 54, 1882].  相似文献   

5.
In this paper, we carry out further mathematical studies of nonlocal constrained value problems for a peridynamic Navier equation derived from linear state-based peridynamic models. Given the nonlocal interactions effected in the model, constraints on the solution over a volume of nonzero measure are natural conditions to impose. We generalize previous well-posedness results that were formulated for very special kernels of nonlocal interactions. We also give a more rigorous treatment to the convergence of solutions to nonlocal peridynamic models to the solution of the conventional Navier equation of linear elasticity as the horizon parameter goes to zero. The results are valid for arbitrary Poisson ratio, which is a characteristic of the state-based peridynamic model.  相似文献   

6.
This paper develops a gradient theory of single-crystal plasticity based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become nonlocal flow rules for the individual slip systems in the form of partial differential equations requiring boundary conditions. Central ingredients in the theory are densities of (geometrically necessary) edge and screw dislocations, densities that describe the accumulation of dislocations, and densities that characterize forest hardening. The form of the forest densities is based on an explicit kinematical expression for the normal Burgers vector on a slip plane.  相似文献   

7.
This study develops a small-deformation theory of strain-gradient plasticity for single crystals. The theory is based on: (i) a kinematical notion of a continuous distribution of edge and screw dislocations; (ii) a system of microscopic stresses consistent with a system of microscopic force balances, one balance for each slip system; (iii) a mechanical version of the second law that includes, via the microscopic stresses, work performed during viscoplastic flow; and (iv) a constitutive theory that allows:
the free energy to depend on densities of edge and screw dislocations and hence on gradients of (plastic) slip;
the microscopic stresses to depend on slip-rate gradients.
The microscopic force balances when augmented by constitutive relations for the microscopic stresses results in a system of nonlocal flow rules in the form of second-order partial differential equations for the slips. When the free energy depends on the dislocation densities the microscopic stresses are partially energetic, and this, in turn, leads to backstresses in the flow rules; on the other hand, a dependence of these stresses on slip-rate gradients leads to a strengthening. The flow rules, being nonlocal, require microscopic boundary conditions; as an aid to numerical solutions a weak (virtual power) formulation of the flow rule is derived.  相似文献   

8.
Precursor decay in plate impact experiments on single crystals is re-examined from the viewpoint of the elastodynamics of moving dislocations. Superposition of solutions for many dislocations set in motion by an incident plane wave is used to relate the decay of the wave amplitude at the front of the plane wave to the density and velocity of dislocations at the wavefront. The resulting precursor decay relation is the same as the one derived from an elastic/visco-plastic model of the material, except for a small correction due to differences between the effects of forward and backward propagating dislocations. Motivated by this added support for the validity of the precursor decay equation, the values used for the quantities in this equation are re-examined. Recent experimental results and the elastodynamics analysis are interpreted as indicating that the commonly-used values of dislocation velocity are probably satisfactory, but that the values used for dislocation density are several orders of magnitude too small near the lapped surfaces of the crystal. These large dislocation densities are identified as the probable dominant cause of the lower-than-predicted precursor amplitudes that are recorded in experiments. More accurate experimental data and inclusion of the non-linear elasticity effects are essential in determining whether or not the observed precursor decay in the bulk of the specimen can be explained by the motion of dislocations present initially. Calculations of energy radiated from screw and edge dislocations that start from rest and move thereafter at constant velocity confirm that dislocation drag forces due to continuum elasticity effects are small for dislocation velocities less than, say, 80% of the elastic shear wave speed. At supersonic speeds the continuum drag effects become so large that sustained supersonic motion of dislocations appears unlikely.  相似文献   

9.
10.
A higher-order nonlocal strain-gradient model is presented for the damped vibration analysis of single-layer graphene sheets (SLGSs) in hygrothermal environment. Based on Kirchhoff plate theory in conjunction with a higher-order (bi-Helmholtz) nonlocal strain gradient theory, the equations of motion are obtained using Hamilton's principle. The higher-order nonlocal strain gradient theory has lower- and higher-order nonlocal parameters and a material characteristic parameter. The presented model can reasonably interpret the softening effects of the SLGS, and indicates a reasonably good match with the experimental flexural frequencies. Finally, the roles of viscous and structural damping coefficients, small-scale parameters, hygrothermal environment and elastic foundation on the vibrational responses of SLGSs are studied in detail.  相似文献   

11.
The functional form of non-local elasticity kernels is studied within the context of the integral formalism. The study is limited to linear isotropic elasticity. The kernels are derived analytically based on the discrete structure of the material at the atomic scale. Atomistic simulations are used to validate the results. Materials in which the interatomic interactions are represented by pair, as well as embedded atom-type potentials are considered. The derived kernels have a range which extends up to the cut-off radius of the interatomic potential, are positive at the origin, and become negative approximately one atomic distance away, thus departing from the commonly assumed Gaussian functional form. The functional form of the potential and the radial distribution function of interacting neighbors about a representative atom fully define their shape. This new continuum model involves two material length scales that are both derived from atomistics for a Morse solid and for Al. Two applications are considered in closure. It is shown that in strained superlattices, the non-local model predicts maximum stresses that are much larger than those obtained within the local theory. This observation has implications for defect nucleation in these structures. Furthermore, the new non-local model improves upon the Gaussian one by predicting a more realistic wave dispersion relationship, with essentially zero group velocity at the boundary of the Brillouin zone.  相似文献   

12.
The correspondence theorem which relates the solutions of displacement boundary value problems in classical and couple stress elasticity is formulated and applied to derive the solutions for edge and screw dislocations in an infinite medium. The effects of couple stresses on the dislocation strain energy is evaluated for both types of dislocations. It is shown that within a radius of influence of each dislocation in a metallic crystal with dislocation density of 1010 cm−2, the strain energy contribution from couple stresses (excluding the core energy) is about 15% in the case of an edge dislocation, and about 11% in the case of a screw dislocation. It is then shown that couple stresses make large effect on the total work of tractions acting on the dislocation core surface.  相似文献   

13.
A second strain gradient elasticity theory is proposed based on first and second gradients of the strain tensor. Such a theory is an extension of first strain gradient elasticity with double stresses. In particular, the strain energy depends on the strain tensor and on the first and second gradient terms of it. Using a simplified but straightforward version of this gradient theory, we can connect it with a static version of Eringen’s nonlocal elasticity. For the first time, it is used to study a screw dislocation and an edge dislocation in second strain gradient elasticity. By means of this second gradient theory it is possible to eliminate both strain and stress singularities. Another important result is that we obtain nonsingular expressions for the force stresses, double stresses and triple stresses produced by a straight screw dislocation and a straight edge dislocation. The components of the force stresses and of the triple stresses have maximum values near the dislocation line and are zero there. On the other hand, the double stresses have maximum values at the dislocation line. The main feature is that it is possible to eliminate all unphysical singularities of physical fields, e.g., dislocation density tensor and elastic bend-twist tensor which are still singular in the first strain gradient elasticity.  相似文献   

14.
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.  相似文献   

15.
The interaction between a screw dislocation and a circular inhomogeneity in gradient elasticity is investigated. The screw dislocation is located inside either the inhomogeneity or the matrix. By using the Fourier transform method, closed analytical solutions are obtained when the inhomogeneity and the matrix have the same gradient coefficient. The explicit expressions of image forces exerted on screw dislocations are derived. The motion of the appointed screw dislocation and its equilibrium positions are discussed. The results show that the classical singularity is eliminated. Especially, for the case of a tiny inhomogeneity, the relation of dislocations and inhomogeneities become quite different. The screw dislocation may be attracted by the stiff inhomogeneity and repelled by the soft inhomogeneity when it tends to the interface. So there is an unstable equilibrium position when a dislocation tends to a tiny stiff inhomogeneity and there is a stable equilibrium position when a dislocation tends to a tiny soft inhomogeneity.  相似文献   

16.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

17.
In the linear nonlocal elasticity theory, the solution to the boundary-value problem of the crack with a constant stress boundary condition does not exist. This problem has been studied in this paper. The contents studied contain of examining objectivity of the energy balance, deducing the constitutive equations of nonlocal thermoelastic bodies, and determining nonlocal force and the linear nonlocal elasticity theory. Some new results are obtained. Among them, the stress boundary condition derived from the linear theory not only solves the problem mentioned at the beginning, but also contains the model of molecular cohesive stress on the sharp crack tip advanced by Barenblatt.  相似文献   

18.
This paper is concerned with the bending problem of nanobeams starting from a nonlocal thermodynamic approach. A new coupled nonlocal model, depending on two nonlocal parameters, is obtained by using a suitable definition of the free energy. Unlike previous approaches which directly substitute the expression of the nonlocal stress into the classical equilibrium equations, the proposed approach provides a methodology to recover nonlocal models starting from the free energy function. The coupled model can then be specialized to obtain a nanobeam formulation based on the Eringen nonlocal elasticity theory and on the gradient elastic model. The variational formulations are consistently provided and the differential equations with the related boundary conditions are thus derived. Nanocantilevers are solved in a closed-form and numerical results are presented to investigate the influence of the nonlocal parameters.  相似文献   

19.
I.Intr0ductionNonlocallinearelasticitytheoryisp0ssible0fbuildingthebridgebetweenmicrostructuresofmaterialsandtheirmacrosc0picmechanicsbehaviorsduet0consideringthelong-rangeforcesamongmicroscopicparticles.SincenonIocalfieldtheorywasadvanced,aseriesresultsl…  相似文献   

20.
A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia, in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号