首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Construction of multi-dimensional isotropic kernels for nonlocal elasticity based on phonon dispersion data
Authors:Susanta Ghosh  Veera Sundararaghavan  Anthony M Waas
Institution:University of Michigan, Ann Arbor, USA
Abstract:Kernels for non-local elasticity are in general obtained from phonon dispersion relations. However, non-local elastic kernels are in the form of three-dimensional (3D) functions, whereas the dispersion relations are always in the form of one-dimensional (1D) frequency versus wave number curves corresponding to a particular wave direction. In this paper, an approach to build 2D and 3D kernels from 1D phonon dispersion data is presented. Our particular focus is on isotropic media where we show that kernels can be obtained using Fourier–Bessel transform, yielding axisymmetric kernel profiles in reciprocal and real spaces. These kernel functions are designed to satisfy the necessary requirements for stable wave propagation, uniformity of nonlocal stress and stress regularization. The proposed concept is demonstrated by developing some physically meaningful 2D and 3D kernels that will find useful applications in nonlocal mechanics. Relative merits of the kernels obtained via proposed methods are explored by fitting 1D kernels to dispersion data for Argon and using the kernel to understand the size effect in non local energy as seen from molecular simulations. A comparison of proposed kernels is made based on their predictions of stress field around a crack tip singularity.
Keywords:Isotropic  Nonlocal  Elasticity  Kernel  Phonon dispersion  Axisymmetry  Hankel transform  Lattice dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号