首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The baroclinic stability of a family of two time‐level, semi‐implicit schemes for the 3D hydrostatic, Boussinesq Navier–Stokes equations (i.e. the shallow water equations), which originate from the TRIM model of Casulli and Cheng (Int. J. Numer. Methods Fluids 1992; 15 :629–648), is examined in a simple 2D horizontal–vertical domain. It is demonstrated that existing mass‐conservative low‐dissipation semi‐implicit methods, which are unconditionally stable in the inviscid limit for barotropic flows, are unstable in the same limit for baroclinic flows. Such methods can be made baroclinically stable when the integrated continuity equation is discretized with a barotropically dissipative backwards Euler scheme. A general family of two‐step predictor‐corrector schemes is proposed that have better theoretical characteristics than existing single‐step schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A constitutive relation is considered for viscoelastic materials at finite strains. This relation is obtained using a one-parameter family of Gordon–Schowalter objective derivatives and generalizes the elementary Maxwell model. It is shown that, in the problem of simple shear of an incompressible viscoelastic material, this constitutive relation allows one to obtain the Poynting effect for any parameters of the model.  相似文献   

3.
The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi–Pasta–Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.  相似文献   

4.
The question of absolute instabilities occuring in a boundary-layer flow with compliant coatings is reassessed. Compliant coatings of the Kramer's type are considered. Performing a local, linear absolute/convective stability analysis, a family of spring-backed elastic plates with damping is shown to be absolutely unstable for sufficiently thin plates. The absolute instability arises from the coalescence between an upstream propagating evanescent mode and the Tollmien–Schlichting wave. To reinforce the local, linear stability results the global stability behaviour of the system is investigated, integrating numerically the full nonparallel and nonlinear two-dimensional Navier–Stokes system coupled to the dynamical model. Injecting Gaussian-type, spatially localized flow disturbances as initial conditions, the spatio-temporal evolution of wave packets is computed. The absolute stability behaviour is retrieved in the global system, for a compliant panel of finite length. It is demonstrated numerically that the global stability behaviour of the wall, triggered by finite-end-effects, may be independent of the disturbance propagation in the flow.  相似文献   

5.
An analytical solution representing a family of stick–slip waves is obtained in a simple example modelling the dynamic behaviour of an elastic cylindrical tube in contact with Coulomb's friction with a rigid and rotating cylinder. This family of waves, representing the non-trivial periodic responses of a continuous system of one space variable, is not classical in the literature.  相似文献   

6.
We consider a two-variable partial differential equations model of cardiac excitation and study spiral wave instability in a one-parameter family of solutions. We investigate numerically the existence of periodic traveling wave solution and show the front and the back interaction far away from the bifurcation point in one dimension. In two dimensions, we show the emergence of a stable spiral pattern before the bifurcation point. The most complex spatiotemporal pattern is called ventricular fibrillation when the breakup of one spiral wave makes another wave and the medium becomes chaotic. We show spiral wave instability and periodic traveling wave instability in the same computational settings. It is found that the pattern of the front–back interaction in two dimensions is similar with that of in the one dimension.  相似文献   

7.
The stability of periodic solutions to the steady forced Korteweg–de Vries–Burgers (fKdVB) equation is investigated here. This family of periodic solutions was identified by Hattam and Clarke (2015) using a multi-scale perturbation technique. Here, Floquet theory is applied to the governing equation. Consequently, two criteria are found that determine when the periodic solutions are stable. This analysis is then confirmed by a numerical study of the steady fKdVB equation.  相似文献   

8.
We analyze canard explosions in delay differential equations with a one-dimensional slow manifold. This study is applied to explore the dynamics of the van der Pol slow–fast system with delayed self-coupling. In the absence of delays, this system provides a canonical example of a canard explosion. We show that as the delay is increased a family of ‘classical’ canard explosions ends as a Bogdanov–Takens bifurcation occurs at the folds points of the S-shaped critical manifold.  相似文献   

9.
We construct a family of exact planar solitary wave solutions in a two-dimensional lattice. The system under consideration is a scalar two-dimensional extension of a nonintegrable Fermi–Pasta–Ulam problem with a piecewise quadratic potential. The constructed solutions exhibit an anisotropic dependence on the angle of propagation. Through a detailed analysis of explicit solutions, we show that conventional quasicontinuum models fail to fully describe this dependence. However, a truncated series approximation of the constructed solution that includes sufficiently short wavelengths captures this effect quite well.  相似文献   

10.
Finite elements using higher-order basis functions in the spirit of the QUICK method for convection-dominated fluid flow and transport problems are introduced and demonstrated. Instead of introducing new internal degrees of freedom, completeness is achieved by including functions based on nodal values exterior and upwind to the element domain. Applied with linear test functions to the weak statements for convection-dominated problems, a family of Petrov–Galerkin finite elements is developed. Quadratic and cubic versions are demonstrated for the one-dimensional convection–diffusion test problem. Elements of up to seventh degree are used for local solution refinement. The behaviour of these elements for one-dimensional linear and non-linear advection is investigated. A two-dimensional quadratic upwind element is demonstrated in a streamfunction–vorticity formulation of the Navier–Stokes equations for a driven cavity flow test problem. With some minor reservations, these elements are recommended for further study and application.  相似文献   

11.
In this article, a new methodology for developing discrete geometric conservation law (DGCL) compliant formulations is presented. It is carried out in the context of the finite element method for general advective–diffusive systems on moving domains using an ALE scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles, it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed‐grid counterpart. However, only a few works proposed a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an averaged ALE Jacobians formulation is obtained. This new formulation is applied to the θ family of time integration methods. In addition, an extension to the three‐point backward difference formula is given. With the aim to validate the averaged ALE Jacobians formulation, a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Tang  Yuhong  Xiao  Min  Jiang  Guoping  Lin  Jinxing  Cao  Jinde  Zheng  Wei Xing 《Nonlinear dynamics》2017,90(3):2185-2198

In this paper, we address the problem of the bifurcation control of a delayed fractional-order dual model of congestion control algorithms. A fractional-order proportional–derivative (PD) feedback controller is designed to control the bifurcation generated by the delayed fractional-order congestion control model. By choosing the communication delay as the bifurcation parameter, the issues of the stability and bifurcations for the controlled fractional-order model are studied. Applying the stability theorem of fractional-order systems, we obtain some conditions for the stability of the equilibrium and the Hopf bifurcation. Additionally, the critical value of time delay is figured out, where a Hopf bifurcation occurs and a family of oscillations bifurcate from the equilibrium. It is also shown that the onset of the bifurcation can be postponed or advanced by selecting proper control parameters in the fractional-order PD controller. Finally, numerical simulations are given to validate the main results and the effectiveness of the control strategy.

  相似文献   

14.
Although family communication is important in clinical genetics only a small number of studies have specifically explored the passing on of genetic knowledge to family members. In addition, many of these present exploratory or tentative findings based upon small sample sizes, or data collected only a short time after testing. Nevertheless, if health professionals are to develop effective strategies to help patients' deal with communication issues, we need to know more about what actually happens in families. The aim of this commentary is to identify factors which appear to influence whether patients share information about genetic risk with relatives who are unaware of that risk, with whom they share it and how they go about it. The paper draws upon evidence and thinking from the disciplines of psychology (including family therapy), sociology, medicine and genetic counselling. It is presented under the following headings: disease factors, individual factors, family factors and sociocultural factors. It concludes by highlighting a number of key issues which are relevant for health professionals.  相似文献   

15.
Nonlinear Dynamics - A dual family of dissipative structure-dependent integration methods is proposed for structural nonlinear dynamics. It not only can be a family of two-step integration methods...  相似文献   

16.
A family of flux‐continuous, control‐volume distributed multi‐point flux approximation schemes CVD (MPFA) have been developed for solving the general geometry‐permeability tensor pressure equation on structured and unstructured grids (Comput. Geo. 1998; 2 : 259–290, Comput. Geo. 2002; 6 : 433–452). The locally conservative schemes are applicable to the diagonal and full‐tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir simulation schemes when applied to full‐tensor flow approximation. The family of flux‐continuous schemes is quantified by a quadrature parameterization. Improved numerical convergence for the family of CVD(MPFA) schemes for specified quadrature points has been observed for lower anisotropy ratios for both structured and unstructured grids in two dimensions. However, for strong full‐tensor anisotropy fields the quadrilateral schemes can induce strong spurious oscillations in the numerical solution. This paper motivates and demonstrates the benefit of using anisotropy favoring triangulation for treating such cases. Test examples involving strong full‐tensor anisotropy fields are presented in 2‐D and 3‐D, which show that the family of schemes on anisotropy favoring triangulation (prisms in 3‐D) yield well‐resolved pressure fields with little or no spurious oscillations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Yan Li 《Nonlinear dynamics》2016,85(4):2425-2436
This paper is devoted to consider a time-delayed diffusive prey–predator model with hyperbolic mortality. We focus on the impact of time delay on the stability of positive constant solution of delayed differential equations and positive constant equilibrium of delayed diffusive differential equations, respectively, and we investigate the similarities and differences between them. Our conclusions show that when time delay continues to increase and crosses through some critical values, a family of homogenous and inhomogeneous periodic solutions emerge. Particularly, we find the minimum value of time delay, which is often hard to be found. We also consider the nonexistence and existence of steady state solutions to the reaction–diffusion model without time delay.  相似文献   

18.
This paper discusses the implementation of an explicit density-based solver, that utilises the central-upwind schemes for the simulation of cavitating bubble dynamic flows. It is highlighted that, in conjunction with the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) scheme they are of second order in spatial accuracy; essentially they are high-order extensions of the Lax–Friedrichs method and are linked to the Harten Lax and van Leer (HLL) solver family. Basic comparison with the predicted wave pattern of the central-upwind schemes is performed with the exact solution of the Riemann problem, for an equation of state used in cavitating flows, showing excellent agreement. Next, the solver is used to predict a fundamental bubble dynamics case, the Rayleigh collapse, in which results are in accordance to theory. Then several different bubble configurations were tested. The methodology is able to handle the large pressure and density ratios appearing in cavitating flows, giving similar predictions in the evolution of the bubble shape, as the reference.  相似文献   

19.
A general two-coupled nonlinear Schrödinger system is investigated with symbolic computation. The system is regarded to be a more general model than other coupled nonlinear Schrödinger systems since its coefficients of the self-phase modulation, cross-phase modulation, and four-wave mixing terms are arbitrary. Painlevé-integrability associated with the system is examined by means of Painlevé test. As a result, Painlevé–Bäcklund transformation is constructed with truncating the Laurent series at the constant level term. In addition, a family of explicit solutions corresponding to the vacuum solutions are derived through the Painlevé–Bäcklund transformation.  相似文献   

20.
Chaos Theory and the Problem of Change in Family Systems   总被引:1,自引:0,他引:1  
In spite of the fact that nonlinear dynamical models have been used for almost half a century in the area of family process theory, an appreciation of the potential of chaos models is a relatively recent development. The present paper discusses the shift of focus in our understanding of family processes resulting from Prigogine's chaos framework, and outlines a chaos approach to family interaction. It is argued that this approach allows us to more effectively address one of the central outstanding questions in the field, namely, how self regulatory behavior can contribute to structural transformation of the family system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号