首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reliable prediction of ductile failure in metals is still a wide-open matter of research. Several models are available in the literature, ranging from empirical criteria, porosity-based models and continuum damage mechanics (CDM). One major issue is the accurate identification of parameters which describe material behavior. For some damage models, parameter identification is more or less straightforward, being possible to perform experiments for their evaluation. For the others, direct calibration from laboratory tests is not possible, so that the approach of inverse methods is required for a proper identification. In material model calibration, the inverse approach consists in a non-linear iterative fitting of a parameter-dependent load–displacement curve (coming from a FEM simulation) on the experimental specimen response. The test is usually a tensile test on a round-notched cylindrical bar. The present paper shows a novel inverse procedure aimed to estimate the material parameters of the Gurson–Tvergaard–Needleman (GTN) porosity-based plastic damage model by means of experimental data collected using image analysis. The use of digital image processing allows to substitute the load–displacement curve with other global quantities resulting from the measuring of specimen profile during loading. The advantage of this analysis is that more data are available for calibration thus allowing a greater level of confidence and accuracy in model parameter evaluation.  相似文献   

2.
In this paper, the structural analysis of steel to aluminum overlap joint is performed with digital image correlation. For this, it is necessary (i) to find the mechanical response in the two sheets after welding and (ii) to find some structural information in order to assess modeling. Because the overlap joint is a peculiar structure with non uniform stress distribution, finite element seems to impose itself in order to assess failure. Thus, local mechanical behavior must be identified. Digital image correlation is an accurate method of identifying material behavior after welding. Once identified, the mechanical response is introduced in a model. Structural finite element model is then compared with some structural experimental measurements (strain field and out of plane displacement field).  相似文献   

3.
利用主元分析法对数字图像相关技术所测结构变形信息进行数据压缩,并进一步用于力学模型未知参量的反求计算。首先,为降低数字图像相关技术所测庞大数据的应用成本,提出利用主元分析法对结构表面变形场数据进行压缩,实现在保留结构表面变形信息主要特征的前提下显著降低数据量的目的;其次,针对压缩后的数据建立了基于最小二乘法的力学模型参量反求模型,并利用高斯牛顿法进行求解;最后,以具体算例从计算精度、收敛速度和抗噪性等方面验证了数据压缩对模型参量反求的效果。研究结果表明,所提方法在显著降低使用数据量的前提下,能够有效提高力学模型参量反求计算的收敛速度,特别是对于包含多个模型参数的反求问题,具有较高的精度和较好的稳定性。  相似文献   

4.
Health monitoring and damage detection strategies for base-excited structures typically rely on accurate models of the system dynamics. Restoring forces in these structures can exhibit highly non-linear characteristics, thus accurate non-linear system identification is critical. Parametric system identification approaches are commonly used, but require a priori knowledge of restoring force characteristics. Non-parametric approaches do not require this a priori information, but they typically lack direct associations between the model and the system dynamics, providing limited utility for health monitoring and damage detection. In this paper a novel system identification approach, the intelligent parameter varying (IPV) method, is used to identify constitutive non-linearities in structures subject to seismic excitations. IPV overcomes the limitations of traditional parametric and non-parametric approaches, while preserving the unique benefits of each. It uses embedded radial basis function networks to estimate the constitutive characteristics of inelastic and hysteretic restoring forces in a multi-degree-of-freedom structure. Simulation results are compared to those of a traditional parametric approach, the prediction error method. These results demonstrate the effectiveness of IPV in identifying highly non-linear restoring forces, without a priori information, while preserving a direct association with the structural dynamics.  相似文献   

5.
Within the domain of structural health monitoring (SHM) measurement techniques have primarily relied on discrete sensing strategies using sensors physically attached to the structural system of interest. These sensors have proven effective in describing both global and local phenomena, but are limited to providing discrete response measurements of these systems. With the introduction of novel imaging tools and image analysis techniques, such as digital image correlation (DIC), the ability to measure the full-field response of these systems provides a novel approach to refining structural identification (St-ID) approaches used in SHM. This paper explores this proposed concept through a case study on a series of structural test specimens analyzed using 3D digital image correlation (3D-DIC) for St-ID. Finite element model updating (FEMU) was used as the technique for the structural identification. For the identification process, ABAQUS was interfaced with MATLAB to converge on the optimal unknown/uncertain system parameters of the experimental setup. 3D-DIC results provided a rich full-field dataset for the identification process, which was compared against measurements derived from traditional physical in-place sensors typically used in SHM. In this work a Hybrid Genetic Algorithm (HGA), which combines the genetic algorithm as a global optimization and a gradient-based method as a local optimization, was used for the FEMU based on 3D-DIC results of structural specimen subjected to variable loading. To minimize the error between the full field 3D-DIC measurements and FEA model updating results, an objective function was introduced that included the full-field contributions of strains and deformation response. The evolution of this objective function illustrated satisfactory convergence of the identified parameters and the excellent agreement of the experimental and numerical strain and displacement responses after the model updating process confirmed the success of the proposed approach. The results of this study highlight the advantage of this hybrid approach and provide the foundation for effective deployment of the proposed strategy for large-scale structural systems.  相似文献   

6.
介绍一种可以用来测量曲面试件表面应分量(εz,εθ,εzθ)的激光光栅显微图像检测技术(IGM),它能实现从小应变到大应变全过程的高精度定量测量。我们将这一技术成功地应用在铁基形状记忆合金(FSMA)管接头的结构设计中,在这项研究中,首先在管接头结构表面制作了变形的载体-位相型干涉光栅,由结构表面产生的衍射光通宵我学系统后形成新的干涉光栅,我们利用数字图像系统接收了逆相变前后各自的干涉图像,采用带  相似文献   

7.
The online parametric identification of deteriorating and non-deteriorating distributed element models (DEMs) with viscous damping is studied using a generalization of Masing model to provide the proper framework for identification. The approach renders the hysteretic response of the DEM into a time-independent single-valued mapping from equivalent displacement values into equivalent force values, while considering the effect of damping as a parallel element. This approach allows for parametric identification of this non-linear rate-dependent hysteretic behavior to be performed using non-linear optimization techniques. A changing objective function, defined as a norm of force estimation error over a shifting window of recent data, is employed so that classic non-linear optimization techniques can be used for the online identification problem. A variation of the steepest descent method is used with significant modifications. Special measures are taken to guarantee robustness of the results in presence of noise. The results show that the proposed identification method exhibits a very good performance in identifying the correct values of the parameters in real time, and is robust in dealing with noise. The proposed method can be applied to many other types of hysteretic behavior as well.  相似文献   

8.
吕西林  周强 《力学季刊》2001,22(1):117-127
在一座三层单跨的钢结构模型中安装了铅芯橡胶耗能器及其和油阻尼器并联组合。对这两种耗能体系进行了振动台试验,以研究组合耗能体系的动力特性,检验其减振效果,试验结果表明:组合耗能体系对位移和加速度有良好的减振效果;在合适的刚度范围内,增加适当的阻尼可提高耗能器的减振效果,进行了数值分析,并与试验结果进行了比较,验证了本文提出的计算模型与方法的正确性。  相似文献   

9.
基于CT扫描的花岗岩三维数值试件重构模型及应用   总被引:2,自引:0,他引:2  
本文以花岗岩试件为研究对象,借助于先进的CT技术获取试件内部结构切片图像,利用数字图像处理技术实现了基于CT图像的花岗岩试件结构的识别和表征,基于矢量化方法和岩石破裂过程分析系统RFPA3D建立了花岗岩三维数值试件,对花岗岩试件单轴压缩破裂过程进行了数值模拟。通过数值试验结果与物理实验结果对比发现,基于CT扫描的花岗岩数值试件的破裂模式与室内实验得到的破裂模式相似,为深入研究岩石、复合材料等力学特征提供了一种可行方法。  相似文献   

10.
Most structural health monitoring and damage detection strategies utilize dynamic response information to identify the existence, location, and magnitude of damage. Traditional model-based techniques seek to identify parametric changes in a linear dynamic model, while non-model-based techniques focus on changes in the temporal and frequency characteristics of the system response. Because restoring forces in base-excited structures can exhibit highly non-linear characteristics, non-linear model-based approaches may be better suited for reliable health monitoring and damage detection. This paper presents the application of a novel intelligent parameter varying (IPV) modeling and system identification technique, developed by the authors, to detect damage in base-excited structures. This IPV technique overcomes specific limitations of traditional model-based and non-model-based approaches, as demonstrated through comparative simulations with wavelet analysis methods. These simulations confirm the effectiveness of the IPV technique, and show that performance is not compromised by the introduction of realistic structural non-linearities and ground excitation characteristics.  相似文献   

11.
Experimental measurements of shock wave propagation from explosions of C4 are presented. Each test is recorded with a high-speed digital video camera and the shock wave is visualized using background-oriented schlieren (BOS). Two different processing techniques for BOS analysis are presented: image subtraction and image correlation. The image subtraction technique is found to provide higher resolution for identifying the location of a shock wave propagating into still air. The image correlation technique is more appropriate for identifying shock reflections and multiple shock impacts in a region with complex flow patterns. The optical shock propagation measurements are used to predict the peak overpressure and overpressure duration at different locations and are compared to experimental pressure gage measurements. The overpressure predictions agree well with the pressure gage measurements and the overpressure duration prediction is within an order of magnitude of the experimental measurements. The BOS technique is shown to be an important tool for explosive research which can be simply incorporated into typical large-scale outdoor tests.  相似文献   

12.
运动副摩擦参数的识别方法研究   总被引:1,自引:0,他引:1  
采用粘性 库仑摩擦模型建立了单自由度回转机械系统运动微分方程,分别从时域和频域角度提出了两种识别运动副摩擦参数的方法。仿真结果表明,两种方法在较高信噪比下均能有效地辨识出库仑摩擦和粘性摩擦参数,其中频域法比时域法具有更高的参数估计精度。对电机驱动的单自由度转动机械系统实验装置的运动副建立了相应的摩擦模型,实验结果表明:在不同试验条件下两种方法计算得到的库仑和粘性摩擦参数具有较好重复性,从而验证了本文参数辨识方法的正确性。  相似文献   

13.
为了完成多桩型复合地基抗液化性能振动台试验,利用实验室已有的反力墙和作动器,设计了一个小型的简易单向振动台系统和堆叠式剪切模型箱。堆叠式剪切模型箱内部尺寸为1200mm×800mm×772mm,由8层铝合金框架和7层橡胶条叠合而成。利用ANSYS有限元软件对模型箱及地基-模型箱进行了动力分析,并通过饱和粉细砂地基模型振动台试验验证了模型箱的效果。结果表明,所设计的模型箱能够较成功地模拟天然场地的边界条件,为多桩型复合地基抗液化性能振动台试验的顺利进行打下基础。  相似文献   

14.
The purpose of this study is to recover the functional form of both non-linear damping and non-linear restoring forces in the non-linear oscillatory motions of an autonomous system. Using two sets of measured motion response data of the system, an inverse problem is formulated for recovering (or identification): the differential equation of motion is transformed into an equivalent integral equation of motion. The identification, which is non-linear, is shown to be one-to-one. However, the inverse problem formulated herein is concerned with the Volterra-type of non-linear integral equation of the first kind. This leads to numerical instability: solutions of the inverse problem lack stability properties. In order to overcome the difficulty, a regularization method is applied to the identification process. In addition, an L-curve criterion, combined with regularization, is introduced to find an optimal choice for the regularization parameter (i.e., the number of iterations), in the presence of noisy data. The workability of the identification is investigated for simultaneously recovering the functional form of the non-linear damping and the non-linear restoring forces through a numerical experiment.  相似文献   

15.
结构面的存在直接影响岩体的强度、变形特征及破坏机制。为探究夏甸金矿矿区结构面的存在对岩体力学参数和岩体质量情况的影响,利用数字摄影测量技术快速获取研究区域结构面几何信息,并通过三维建模、激光扫描技术以及VR-Platform虚拟现实平台实现了结构面二维几何信息的真三维表征。基于此,利用广义Hoek-Brown强度准则分析计算了各研究区域的岩体力学参数,并根据岩体基本质量指标BQ值进行了岩体质量分级评价。结果表明,夏甸金矿岩体力学参数指标和岩体质量指标均较好;矿体下盘距离矿体方向越远,岩体完整性系数和岩体力学参数越低;利用广义Hoek-Brown强度准则计算所得岩体力学参数除内摩擦角外数值均与前期试验所得数据基本一致,计算所得岩体内摩擦角度偏大的原因,可能是其未考虑结构面自身的颗粒直径和形态等对岩体内摩擦角的影响。  相似文献   

16.
System identification and damage detection based on vibration data have received considerable attention recently because of their importance to structural health monitoring. Various technical approaches have been proposed in the literature; however, the on-line identification of the changes of parameters for non-linear structures due to damages is still a challenging problem. In this paper, we propose an on-line adaptive tracking technique, based on the least-square estimation, to identify the system parameters and their changes of non-linear hysteretic structures. The method proposed is capable of tracking abrupt or slow changes of the system parameters from which the damage event and the severity of the structural damage can be detected and evaluated. Simulation results for tracking the parametric changes of non-linear hysteretic structures are presented to demonstrate the application and effectiveness of the proposed technique in detecting the structural damages.  相似文献   

17.
A new methodology is proposed to estimate displacement fields from pairs of images (reference and strained) that evaluates continuous displacement fields. This approach is specialized to a finite-element decomposition, therefore providing a natural interface with a numerical modeling of the mechanical behavior used for identification purposes. The method is illustrated with the analysis of Portevin–Le Chatelier bands in an aluminum alloy sample subjected to a tensile test. A significant progress with respect to classical digital image correlation techniques is observed in terms of spatial resolution and uncertainty.  相似文献   

18.
The present study focuses on the identification of the evolution of the local elasto-plastic properties of an Al 5456 FSW weld. To make the best use of the data collected using digital image correlation and to obtain an accurate identification of the evolution of the mechanical properties throughout the weld, an inverse procedure based on the Virtual Fields Method is proposed. Then, the strain-rate dependence of these properties is investigated by performing a set of tensile tests with a cross-head displacement speed evolving from 0.01 mm.s???1 to 76 mm.s???1. Identification of the evolution of the plastic properties throughout the weld with high spatial resolution has been achieved, and results from our study indicate that the plastic parameters in the center of the weld undergo a significant change even at low strain-rate (10 s???1).  相似文献   

19.
The paper presents a method to estimate the Statistically Equivalent Periodic Unit Cell (SEPUC) corresponding to a masonry with quasi-periodic texture. The identification of the texture and the constituent phases (unit blocks and mortar joints) is achieved by means of digital image processing techniques applied to color image of the masonry wall. A statistical analysis of geometrical parameters (width and height of blocks, thickness and length of mortar joints) allows to estimate their probability distribution and to identify the typology of the texture. Subsequently a Monte Carlo analysis is performed using several tentative SEPUCs generated with different dimensions of blocks and joints according to the estimated distributions. A criterion was eventually proposed to identify, among the numerically generated ones, the SEPUC which is more suitable to model the behavior of masonry wall. The SEPUC is analyzed with techniques available for periodic texture, applying periodic boundary conditions, in order to estimate the equivalent elastic stiffness. The proposed method is validated comparing the results in the elastic range obtained with SEPUC and those obtained imposing essential and natural boundary conditions on the original texture.  相似文献   

20.
This paper investigates the behavior of a non-linear mechanical model where a block is driven by an oscillating ground through Coulomb friction, a linear viscous damper and a linear spring. The governing equation is solved analytically for different partial configurations: friction only, friction with viscous damping, friction with a linear restoring force, and for the complete model. Using dimensionless groups, the analysis of the block motion provides a comprehensive set of information on the motion regime (stick, stick-slip or permanent sliding), on the dominant energies or forces, on the resonance and on the amplification of the ground oscillation by the system. The limit between the stick-slip regime and the permanent slipping regime is found either analytically or numerically. It is also shown that there exists a set of parameters for which the friction force, the viscous dissipative force and the elastic restoring force are equal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号