首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
We investigate the filtration law of incompressible viscous Newtonian fluids in rigid non-inertial porous media, for example, rotating porous media. The filtration law is obtained by upscaling the flow at the pore scale. We use the method of multiple scale expansions which gives rigorously the macroscopic behaviour without any prerequisite on the form of the macroscopic equations. For finite Ekman numbers the filtration law is shown to resemble a Darcy's law, but with a non-symmetric permeability tensor which depends on the angular velocity of the porous matrix. We obtain the filtration analog of the Hall effect. For large Ekman numbers the filtration law is a small correction to the classical Darcy's law. The corrector is antisymmetric. In this case we recover a structure of law which is similar to phenomenological laws introduced in the literature, but with a dissimilar effective coefficient.  相似文献   

2.
We investigate wave propagation in elastic porous media which are saturated by incompressible viscous Newtonian fluids when the porous media are in rotation with respect to a Galilean frame. The model is obtained by upscaling the flow at the pore scale. We use the method of multiple scale expansions which gives rigorously the macroscopic behaviour without any prerequisite on the form of the macroscopic equations. For Kibel numbers A A(1), the acoustic filtration law resembles a Darcys law, but with a conductivity which depends on the wave frequency and on the angular velocity. The bulk momentum balance shows new inertial terms which account for the convective and Coriolis accelerations. Three dispersive waves are pointed out. An investigation in the inertial flow regime shows that the two pseudo-dilatational waves have a cut-off frequency.  相似文献   

3.
A development is provided showing that for any phase, by not neglecting the macroscopic terms of the deviation from the intensive momentum and of the dispersive momentum, we obtain a macroscopic secondary momentum balance equation coupled with a macroscopic dominant momentum balance equation that is valid at a larger spatial scale. The macroscopic secondary momentum balance equation is in the form of a wave equation that propagates the deviation from the intensive momentum while concurrently, in the case of a Newtonian fluid and under certain assumptions, the macroscopic dominant momentum balance equation may be approximated by Darcys equation to address drag dominant flow. We then develop extensions to the dominant macroscopic Navier–Stokes (NS) equation for saturated porous matrices, to account for the pressure gradient at the microscopic solid-fluid interfaces. At the microscopic interfaces we introduce the exchange of inertia between the phases, accounting for the relative fluid square velocities and the rate of these velocities, interpreted as Forchheimer terms. Conditions are provided to approximate the extended dominant NS equation by Forchheimer quadratic momentum law or by Darcys linear momentum law. We also show that the dominant NS equation can conform into a nonlinear wave equation. The one-dimensional numerical solution of this nonlinear wave equation demonstrates good qualitative agreement with experiments for the case of a highly deformable elasto-plastic matrix.  相似文献   

4.
The homogenisation method with multiple scale expansions is used to investigate the slow and isothermal flow of generalised Newtonian fluids through anisotropic porous media. From this upscaling it is shown that the first-order macroscopic pressure gradient can be defined as the gradient of a macroscopic viscous dissipation potential, with respect to the first-order volume averaged fluid velocity. The macroscopic dissipation potential is the volume-averaged of local dissipation potential. Using this property, guidelines are proposed to build macroscopic tensorial permeation laws within the framework defined by the theory of anisotropic tensor functions and by using macroscopic isodissipation surfaces. A quantitative numerical study is then performed on a 3D fibrous medium and with a Carreau–Yasuda fluid in order to illustrate the theoretical results deduced from the upscaling.  相似文献   

5.
6.
7.
This work deals with the large-scale mathematical modelling of flow of gas at low pressure in porous media. At the pore scale, this type of flow is characterised by a wall-slip effect, which at the sample scale entails a dependence of permeability upon gas pressure. This latter property is described by Klinkenberg's law. The goal of the present work is to examine the robustness of this law, by determining whether it is still verified on a large-scale: upscaling is thus applied, starting with Klinkenberg's law at the local scale. A Klinkenberg's flow of gas in a two-constituent composite porous medium is considered, and the constituents are firstly assumed to be homogeneous. The cases of low and of high permeability contrast are successively examined. Upscaling is performed using the homogenisation method of multiple scale expansions. In both cases, the large-scale permeability tensor differs from its liquid counterpart. Except in the particular case of equal Klinkenberg factors, Klinkenberg's law is not verified at low permeability contrast. At high permeability contrast, the large-scale gas permeability verifies Klinkenberg's law. The case of heterogeneous constituents is then examined. It is shown that the large-scale permeability differs from its liquid counterpart, but it does not verify Klinkenberg's law.  相似文献   

8.
Nonlinear fluid flow laws for orthotropic porous media are written in invariant tensor form. As usual in the theory of fluid flow through porous media [1, 2], the equations contain the flow velocity up to the second power. Expressions that determine the nonlinear resistances to fluid flow are presented and it is shown that, on going over from linear to nonlinear flow laws, the asymmetry effect may manifest itself, that is, the fluid flow characteristics may differ along the same straight line in the positive and negative directions. It is shown that, as compared with the linear fluid flow law for orthotropic media when for three symmetry groups a single flow law is sufficient, in nonlinear laws the anisotropy manifestations are much more variable and each symmetry group must be described by specific equations. A system of laboratory measurements for finding the nonlinear flow characteristics for orthotropic porous media is considered.  相似文献   

9.
High velocity flow in porous media   总被引:2,自引:0,他引:2  
  相似文献   

10.
在无源汇条件下,根据流过某一个横截面的流体流量等于流过这一横截面内所有精细网格的流体流量之和这一特点提出了粗化网格等效渗透率的计算方法。在粗化区内,利用直接解法求解二维渗流方程,再用这些解合成粗化网格的三维合成解,并由合成解计算粗化网格的等效渗透率。根据精度的要求采用了不均匀网格粗化,在流体流速大的区域采用精细网格。利用所得等效渗透率计算了粗化网格的某三维非均匀不稳定渗流场的压降解,结果表明三维非均匀不稳定渗流方程的二维不均匀粗化解非常逼近采用精细网格的解,但计算的速度比采用精细网格提高了80倍。  相似文献   

11.
Yang  D.  Udey  N.  Spanos  T.J.T. 《Transport in Porous Media》1999,35(1):37-47
A thermodynamic automaton model of fluid flow in porous media is presented. The model is a nonrelativistic version of a Lorentz invariant lattice gas model constructed by Udey et al. (1998). In the previous model it was shown that the energy momentum tensor and the relativistic Boltzman equation can be rigorously derived from the collision and propagation rules. In the present paper we demonstrate that this nonrelativistic model can be used to accurately simulate well known results involving single phase flow and diffusion in porous media. The simulation results show that (1) one-phase flow simulations in porous media are consistent with Darcy's law; (2) the apparent diffusion coefficient decreases with a decrease in permeability; (3) small scale heterogeneity does not affect diffusion significantly in the cases considered.  相似文献   

12.
Inertia Effects in High-Rate Flow Through Heterogeneous Porous Media   总被引:1,自引:0,他引:1  
The paper deals with the effects of large scale permeability–heterogeneity on flows at high velocities through porous media. The media is made of a large number of homogeneous blocks where the flow is assumed to be governed by the Forchheimer equation with a constant inertial coefficient. By assuming the validity of the Forchheimer equation at the large scale, an effective inertial coefficient is deduced from numerical simulations. Different media are investigated: serial-layers, parallel-layers and correlated media. The numerical results show that: (i) for the serial-layers, the effective inertial coefficient is independent of the Reynolds number and decreases when the variance and the mean permeability ratio increases; (ii) for the parallel-layers and the correlated media, the effective inertial coefficient is function of the Reynolds number and increases when the variance and the mean permeability ratio increases. Theoretical relationships are proposed for the inertial coefficient as function of the Reynolds number and the characteristics of the media.  相似文献   

13.
渗流方程自适应非均匀网格Dagan粗化算法   总被引:4,自引:0,他引:4  
在粗网格内先统计渗透率在粗网格中的概率分布,利用Dagan渗透率粗化积分方程通过渗透率概率分布计算粗化网格的等效渗透率,并由等效渗透率计算了粗化网格的压强分布,计算压强时还将渗透率自适应网格技术应用于三维渗流方程的网格粗化算法中,在渗透率或孔隙度变化异常区域自动采用精细网格,用直接解法求解渗透率或孔隙度变化异常区域的压强分布。整个求解区采用不均匀网格粗化,在流体流速高的区域采用精细网格。利用本文方法计算了三维渗流方程的压强分布,结果表明这种算法的解在渗透率或孔隙度异常区的压强分布规律非常逼近精细网格的解,在其他区域压强分布规律非常逼近粗化算法的解,计算速度比采用精细网格提高了约100倍。  相似文献   

14.
李勇  钱蔚旻  何录武 《力学季刊》2022,43(1):171-177
在表征体元尺度采用格子Boltzmann方法分析膨胀性非牛顿流体在多孔介质中的流动,基于二阶矩模型在演化方程中引入表征介质阻力的作用力项,求解描述渗流模型的广义Navier-Stokes方程.采用局部法计算形变速率张量,通过循环迭代得到非牛顿粘度和松弛时间.对多孔介质的Poiseuille流动进行分析,通过比较发现结果与孔隙尺度的解析解十分吻合,并且收敛较快,表明方法合理有效.分析了渗透率和幂律指数对速度和压力降的影响,研究结果表明,膨胀性流体的多孔介质流动不符合达西规律,压力降的增加幅度小于渗透率的减小幅度.当无量纲渗透率Da小于10-5时,流道中的速度呈现均匀分布,并且速度分布随着幂律指数的减小趋于平滑.压力降随着幂律指数的增加而增加,Da越大幂律指数对压力降的影响越明显.  相似文献   

15.
This paper presents a numerical approach for the simulation of fluid flow through porous media by proposing a theoretical and numerical meso-to-macro multiscale framework, which combines the advantages of the lattice Boltzmann method (LBM) with the continuum Theory of Porous Media (TPM) to efficiently and accurately model fluid transport in heterogeneous porous media. In particular, LBM presents an alternative to experiments by studying the flow from a mesoscopic perspective, which in turn, allows the derivation of the material parameters needed for simulating the flow in the macroscopic TPM model. In this work, a meso-macro hierarchic upscaling scheme is applied to investigate the deformation-dependent intrinsic permeability properties and the Darcy/non-Darcy fluid flow regime. Concerning the mesoscale, the intrinsic permeability of the porous domain is computed by means of the LBM model at the first stage. Subsequently, deformation of the medium takes place in furtherance of determining the relation of the aforementioned deformation dependency. Thereupon, these findings are input into the TPM model in order to compute the primary unknown variables, where special focus is laid on the stability challenges in the compaction and near compaction states. With respect to the criteria of non-Darcy fluid flow, the conditions of its onset, i.e. the induced pressure gradient and mean fluid flow velocity, are computed as well using the LBM solver and conveyed afterwards to the macroscopic TPM model. Herein, the non-Darcy intrinsic permeability has been investigated in the TPM approach based on the Forchheimer equation. Simulations done on a synthetic porous micro-structure show that the combined framework proved to stand well between the two approaches.  相似文献   

16.
Modelling of solute transport in fractured porous media is a subject of intensive research in many engineering disciplines, such as petroleum engineering, water resources management, civil engineering. Recent field and laboratory experiments show that, in presence of strong adsorption, the behaviour of solute penetrating into the fractured porous medium diverges from classical hypotheses, rendering impossible the adjustment of classical transport models. The aim of this paper is to develop a mathematical continuous model of solute transport, when strong adsorption of solute occurs on the grains of the porous matrix. The macroscopic model is obtained by upscaling the pore and the fracture behaviours, by using the multiple scale expansion method. We obtain a non-standard diffusion behaviour of solute which shows local non-equilibrium between transport in the fractures and in the porous matrix, as well as memory effects. To cite this article: J. Lewandowska et al., C. R. Mecanique 330 (2002) 879–884.  相似文献   

17.
In this work, the magnetohydrodynamics (MHD) natural convection heat transfer problem inside a porous medium filled with inclined rectangular enclosures is investigated numerically. The boundary conditions selected on the enclosure are two adiabatic and two isothermal walls. The governing equations, continuity, and Forchheimer extension of the Darcy law and energy are transformed into dimensionless forms by using a set of suitable variables, and then solved by using a finite difference scheme. The governing parameters are the magnetic influence number, the Darcy Rayleigh number, the inclination angle, and the aspect ratio of the enclosure. It is found that the magnetic influence number and the inclination angle have pronounced effects on the fluid flow and heat transfer in porous media-filled enclosures.  相似文献   

18.
19.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号