首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
渗流方程自适应非均匀网格Dagan粗化算法   总被引:4,自引:0,他引:4  
在粗网格内先统计渗透率在粗网格中的概率分布,利用Dagan渗透率粗化积分方程通过渗透率概率分布计算粗化网格的等效渗透率,并由等效渗透率计算了粗化网格的压强分布,计算压强时还将渗透率自适应网格技术应用于三维渗流方程的网格粗化算法中,在渗透率或孔隙度变化异常区域自动采用精细网格,用直接解法求解渗透率或孔隙度变化异常区域的压强分布。整个求解区采用不均匀网格粗化,在流体流速高的区域采用精细网格。利用本文方法计算了三维渗流方程的压强分布,结果表明这种算法的解在渗透率或孔隙度异常区的压强分布规律非常逼近精细网格的解,在其他区域压强分布规律非常逼近粗化算法的解,计算速度比采用精细网格提高了约100倍。  相似文献   

2.
河道砂油藏的自适应非均匀网格粗化算法   总被引:5,自引:1,他引:5  
以河道砂的观测深度为确定性数据,由贝叶斯理论通过随机楚模的方法楚立横截面为抛物线形状的河道砂油藏边界面,并将渗透率自适应网格技术应用于河道砂油藏的网格粗化算法中。在渗透率或孔隙度交化异常区域自动采用精细网格,用直接解法求解渗透率或孔隙度交化异常区域的压强分布,而在其他区域采用不均匀网格粗化方法计算,印在流体流速大的区域采用精细网格。用本文方法计算了河道砂油藏的压强分布,结果表明河道砂油藏的三维不均匀自适应网格粗化算法的解在渗透率或孔隙度异常区的压强分布规律更逼近采用精细网格的解,在其他区域压强分布规律非常逼近粗化算法的解,但计算的速度比采用精细网格提高了100多倍。  相似文献   

3.
根据泥质夹层的低渗特性及空间分布,本文提出了一种含泥质夹层油藏网格渗透率的粗化计算方法,并在此基础上,将自适应网格算法应用于含泥质夹层油藏的数值模拟,提升其计算效率.在计算过程中,网格的动态划分仅依据流体物理量的变化,泥质夹层区域不全部采用细网格,仅针对流动锋面处的泥质夹层采用细网格,其余泥质夹层处采用不同程度的粗网格.相较于传统算法,网格数大幅下降.数值算例表明,自适应网格算法的计算结果精度与全精细网格一致,能够准确模拟出泥质夹层对于流体的阻碍作用,同时计算效率得到大幅提升,约为全精细网格算法的3~7 倍.  相似文献   

4.
非均匀介质弹性波动方程的不规则网格有限差分方法   总被引:2,自引:0,他引:2  
从弹性波动方程出发,提出了一种新的空间不规则网格有限差分方法,并用于求解非均匀各向异性介质中的弹性波正演问题。这种方法简单易行,对于复杂几何结构,例如低速层、套管井和非平面界面等,在较细的不规则网格上进行离散,计算时间和占用内存更少。与多重网格差分方法相比,该方法不需要粗、细网格之间的插值,所有网格差分计算在同一次空间迭代中完成。具有复杂几何交界面的模型计算,包括地下透镜体、套管井眼等,在确定弹性常数和密度后,用不规则网格的差分方法更易实现。该方法使用了Higdon吸收边界条件解决人工边界反射问题,引入了新的稳定性条件和网格频散条件,很好地消除了非物理散射波。理论模型的效值计算表明,该方法具有良好的稳定性和计算精度,在模拟非均匀介质弹性波传播时,比相同精度的规则网格有限差分方法计算速度更快。该方法易于推广到非结构网格和三维问题中。  相似文献   

5.
三维非均匀介质中弹性波传播的数值模拟   总被引:5,自引:1,他引:4  
提出了一种三维非均匀介质中弹性波传播数值模拟的方法,文中称为三维格子法。该算法是二维格子法(一种二维非均匀介质中P-SV波传播的数值模拟算法)向三维非均匀介质情况的推广。在空间离散上该文方法与有限元方法类似,容许根据连续体的形状和介质分界面任意剖面网格,且自然满足自由表面边界条件。不同于常规有限差分法在各个节点上满足动力学微分方程,该算法通过满足各节点周围格子的整体平衡(积分平衡方程)来对问题进行求解,三维格子法所需的计算机内存及计算耗时与同阶精度的规则网格有限差分法相当。算例表明,该文提出的三维格子法具有较高的精度且可很好地模拟三维复杂形状地表对弹性波的反射和绕射。  相似文献   

6.
王年华  李明  张来平 《力学学报》2018,50(3):527-537
非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义. 计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两个方面考察黏性流动模拟精度的影响因素. 首先从理论上分析了黏性通量离散中的“奇偶失联”问题,并通过基于标量扩散方程的制造解方法验证了“奇偶失联”导致的精度下降现象,进一步通过引入差分修正项消除了“奇偶失联”并提高了扩散方程计算精度;其次,在不同类型、不同质量的网格上进行基于扩散方程的制造解精度测试,考察单元梯度重构方法、界面梯度计算方法对扩散方程计算精度的影响,结果显示,单元梯度重构精度和界面梯度计算方法均对扩散方程计算精度起重要作用;最后对三个黏性流动算例(二维层流平板、二维湍流平板和二维翼型近尾迹流动)进行网格收敛性研究,初步验证了本文的结论,得到了计算精度和网格收敛性均较好的黏性通量计算格式.   相似文献   

7.
在二维、三维非结构网榕上,针对间断Galerkin方法计算量大、收敛慢的缺点将p型多重网格方法应用于该方法求解跨音速Euler方程,提高计算效率。p型多重网格方法是通过对不同阶次多项式近似解进行递归迭代求解,来达到加速收敛。文中对高阶近似(p>0)使用显式格式,最低阶近似(p=0)采用隐式格式。NACA0012翼型和O...  相似文献   

8.
在空间域上采用只与结点有关的无网格方法离散,在时间域上采用精细积分方法求 解. 无网格离散过程中,利用伽辽金积分等效弱形式代替微分形式的控制方程,并 用修正变分原理满足位移边界条件,采用移动最小二乘法求解离散的形函数,把形 函数代入等效积分弱形式得到离散的二阶方程;精细积分过程中非齐次项采 用Romberg积分. 同时给出了两种不同边界条件的谐响 应求解的两个数值算例,得到了精确的数值结果.  相似文献   

9.
非结构混合网格高超声速绕流与磁场干扰数值模拟   总被引:2,自引:0,他引:2  
对均匀磁场干扰下的二维钝头体无粘高超声速流场进行了基于非结构混合网格的数值模拟.受磁流体力学方程组高度非线性的影响及考虑到数值模拟格式的精度,目前在此类流场的数值模拟中大多使用结构网格及有限差分方法,因而在三维复杂外形及复杂流场方面的研究受到限制.本文主要探索使用非结构网格(含混合网格)技术时的数值模拟方法.控制方程为耦合了Maxwell方程及无粘流体力学方程的磁流体力学方程组,数值离散格式采用Jameson有限体积格心格式,5步Runge-Kutta显式时间推进.计算模型为二维钝头体,初始磁场均匀分布.对不同磁感应强度影响下的高超声速流场进行了数值模拟,并与有限的资料进行了对比,得到了较符合的结果.  相似文献   

10.
编写了适用于模拟具有高密度比、高压力比的强激波问题的二维柱对称多介质流体计算程序。利用有限体积方法求解流体的Euler方程组,采用level set方法捕捉爆炸产物与空气的运动界面,并通过求解物质界面两侧Riemann问题的精确解来计算爆炸产物与空气之间的数值通量。研制了三角形网格自适应技术来实现网格的自动加密和粗化,在保证捕捉激波峰值的前提下有效地提高了计算效率。利用计算程序对1 kt TNT当量的空气自由场强爆炸问题进行数值模拟,计算得到的峰值超压、冲击波到达时间等物理参数与点爆炸理论结果基本一致。  相似文献   

11.
An improved vorticity-based gridding technique is presented and applied to create optimal non-uniform Cartesian coarse grid for numerical simulation of two-phase flow. The optimal coarse grid distribution (OCGD) is obtained in a manner to capture variations in both permeability and fluid velocity of the fine grid using a single physical quantity called “vorticity”. Only single-phase flow simulation on the fine grid is required to extract the vorticity. Based on the fine-scale vorticity information, several coarse grid models are generated for a given fine grid model. Then the vorticity map preservation error is used to predict how well each coarse grid model reproduces the fine-scale simulation results. The coarse grid model which best preserves the fine-scale vorticity, i.e. has the minimum vorticity map preservation error is recognized as an OCGD. The performance of vorticity-based optimal coarse grid is evaluated for two highly heterogeneous 2D formations. It is also shown that two-phase flow parameters such as mobility ratio have only minor impact on the performance of the predicted OCGD.  相似文献   

12.
An adaptive grid solution procedure is developed for incompressible flow problems in which grid refinement based on an equidistribution law is performed in high-error-estimate regions that are flagged from a preliminary coarse grid solution. Solutions on the locally refined and equidistributed meshes are obtained using boundary conditions interpolated from the preliminary coarse grid solution, and solutions on both the refined and coarse grid regions are successively improved using a multigrid approach. For this purpose, suitable correction terms for the coarse grid equations are derived for all variables in the flagged regions. This procedure with Local Adaptation, Multigridding and Equidistribution (LAME) concepts is applied to various flow problems to demonstrate the accuracy improvements obtained using this method.  相似文献   

13.
Fines release and migration is a universal problem in the production of oil from poorly consolidated sandstone reservoirs. This problem can result in the changes of porosity and permeability. It may not only damage a production facility, but it can also have a profound effect on oil recovery, resulting from the change in heterogeneity of the oil formation. Based on the macroscopic continuous porous media, continuity equations for multiphase flow in oil formations, and the theories of fines release and migration, a three-dimensional (3D) field scale mathematical model describing migration of fines in porous media is developed. The model is solved by a finite-difference method and the line successive over relaxation (LSOR) technique. A numerical simulator is written in Fortran 90 and it can be used to predict (1) the ratio of fines to production liquid volume, (2) the permeability change caused by colloidal and hydrodynamic forces resulting from fines release and migration, and (3) production performance. The numerical results of the one-dimensional model were verified by the data obtained by core displacement experiments. The sensitivity of numerical results with grid block size was studied by coarse grids, moderate grids, and fine grids. In addition, an oil field example with five-spot patterns was made on the numerical simulator. The results show that fines migration in an oil formation can accelerate the development of heterogeneity of the reservoir rock, and has an obvious influence on production performance, i.e., water drive front, water-cut trends, and oil recovery.  相似文献   

14.
This paper presents a new method for scaling up multiphase flow properties which properly accounts for boundary conditions on the upscaled cell. The scale-up proposed does not require the simulation of a complete finely-gridded model, instead it calls for assumptions allowing the calculation of the boundary conditions related to each block being scaled up. To upscale a coarse block, we have to assume or determine the proper boundary conditions for that coarse block. To date, most scale-up methods have been based on the assumption of steady-state flow associated with uniform fractional flows over all the boundaries of the coarse block. However, such an assumption is not strictly valid when we consider heterogeneities. The concept of injection tubes is introduced: these are hypothetical streamtubes connecting the injection wellbore to all inlet faces of the fine grid cells constituting the block to be scaled up. Injection tubes allow the capturing of the fine-scale flow behavior of a finely-gridded model at the inlet face of the coarse block without having to simulate that fine grid. We describe how to scale up an entire finely-gridded model sequentially using injection tubes to determine the boundary conditions for two-phase flow. This new scale-up method is able to capture almost exactly the fine-scale two-phase flow behavior, such as saturation distributions, inside each isolated coarse-grid domain. Further, the resultant scaled-up relative permeabilities reproduce accurately the spatially-averaged performance of the finely-gridded model throughout the simulation period. The method has been shown to be applicable not only to viscous-dominated flow but also to flow affected by gravity for reasonable viscous-to-gravity ratios.  相似文献   

15.
This paper deals with the numerical simulation of fluid dynamics using the boundary–domain integral technique (BEM). The steady 2D diffusion–convection equations are discussed and applied to solve the plane Navier-Stokes equations. A vorticity–velocity formulation has been used. The numerical scheme was tested on the well-known ‘driven cavity’ problem. Results for Re = 1000 and 10,000 are compared with benchmark solutions. There are also results for Re = 15,000 but they have only qualitative value. The purpose was to show the stability and robustness of the method even when the grid is relatively coarse.  相似文献   

16.
Accurate up-scaling is an essential part of creating a valid reservoir coarse scale dynamic model. In this article, unstructured discretization of spatial domain is accompanied by numerical permeability up-scaling in order to construct an accurate coarse scale model. A new technique for generating a course scale triangular mesh is presented in which the density of elements in key flow regions is kept high to capture accuracy. The fine scale permeability map is investigated using image processing techniques, especially steerable filters, and the results are converted into a high-resolution element size map. This element size map will be refined by the integration of other important factors such as well-position effects and used to construct a coarse triangular mesh. The combination of flux-continuous pressure approximation and mass conservative, total variation diminishing finite volume schemes have been considered to solve two phase flow equations on the control volume finite element mesh. Fine scale simulations results are compared with the coarse scale ones for a series of water flooding examples to investigate the efficiency and accuracy of the presented gridding methodology. This method is developed for 2D cases, but can be easily extended to 3D problems.  相似文献   

17.
We introduce a finite-difference method to simulate pore scale steady-state creeping fluid flow in porous media. First, a geometrical approximation is invoked to describe the interstitial space of grid-based images of porous media. Subsequently, a generalized Laplace equation is derived and solved to calculate fluid pressure and velocity distributions in the interstitial space domain. We use a previously validated lattice-Boltzmann method (LBM) as ground truth for modeling comparison purposes. Our method requires on average 17 % of the CPU time used by LBM to calculate permeability in the same pore-scale distributions. After grid refinement, calculations of permeability performed from velocity distributions converge with both methods, and our modeling results differ within 6 % from those yielded by LBM. However, without grid refinement, permeability calculations differ within 20 % from those yielded by LBM for the case of high-porosity rocks and by as much as 100 % in low-porosity and highly tortuous porous media. We confirm that grid refinement is essential to secure reliable results when modeling fluid flow in porous media. Without grid refinement, permeability results obtained with our modeling method are closer to converged results than those yielded by LBM in low-porosity and highly tortuous media. However, the accuracy of the presented model decreases in pores with elongated cross sections.  相似文献   

18.
孤立波与多孔介质结构物的非线性相互作用   总被引:1,自引:0,他引:1  
刘桦  王本龙 《力学季刊》2000,21(2):157-161
基于精确至O(εμ^2,μ^4)的多孔介质无压渗流模型方程和均匀流体质波动的Boussinesq方程,本文对孤立波与多孔介质结构物的相互作用了较系统的数值实验。控制方程采用基于有限差分方程离散,在时域上采用了预估-校正方法进行了时间积分。在求解演化方程的过程中,引入“内迭代”过程实现流体域和多孔介质交界面的连接条件。结果表明孤立波在多孔介质上的反射与在不可渗透的界面上的反射类似,形成反向的孤立波但  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号