首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A fully nonlinear model of suspension bridges parameterized by one single space coordinate is proposed to describe overall three-dimensional motions. The nonlinear equations of motion are obtained via a direct total Lagrangian formulation and the kinematics, for the deck-girder and the suspension cables, feature the finite displacements of the associated base lines and the flexural and torsional rotations of the deck cross-sections assumed rigid in their own planes. The strain-displacement relationships for the generalized strain parameters, the elongations in the cables, the deck elongation, and the three curvatures, retain the full geometric nonlinearities. The proposed nonlinear model with its full extensional-flexural-torsional coupling is employed to study the torsional divergence caused by the static part of the wind-induced forces. Two suspension bridges are considered as case studies: the Runyang bridge (main span 1,490?m) and the Hu Men bridge (main span 888?m) in China. The evaluation of the onset of the static instability and the post-critical behavior takes into account the prestressed condition of the bridge subject to dead loads. The dynamic bifurcation that occurs at the onset of flutter is also studied accounting for the prestressed equilibrium state about which the equations of motion are obtained via an updated Lagrangian formulation. Such a bifurcation is investigated in the context of the parametric nonlinear model considering the model parameters of the Runyang Suspension Bridge together with its aeroelastic derivatives. The calculated critical wind speeds for the onset of the static and dynamic bifurcations are compared with the results obtained via linear analysis and the main differences are highlighted. Parametric sensitivity studies are carried out to assess the influence of the design parameters on the instabilities associated with the bridge aeroelastic response.  相似文献   

2.
Experimental modal analysis techniques have been shown to be applicable to both laboratory test specimens and in situ test structures made of reinforced concrete. These techniques, in general, apply only to linear structures; however, many concrete structures are designed to remain in the linear, uncracked response region during dynamic excitation (nuclear power plant structures, for example). Data from the experimental analyses agreed well with finite-element modal analysis results, and the numerical models were further refined based on the experimental results. Because of the relatively low excitation levels required, these methods provide engineers with techniques for assessing the as-built condition of a structure without introducing damage into the structure. If a concrete structure is damaged, the experimental modal analysis methods could possibly be used to monitor its deterioration.
Further investigations are needed to evaluate the sensitivity to damage of the experimentally determined modal properties. Also, methods must be found to determine, without prior modal data, if an in-situ structure is in a damaged state. These topics are being pursued by other researchers in the experimental modal analysis field.6
In its current form, experimental modal analysis methods can provide both practicing and research engineers with a valuable tool for verifying dynamic properties of reinforced concrete structures.  相似文献   

3.
A framework for the numerical analysis of bridges under wind excitation is outlined. It is based on structural finite element scheme and cross-sectional wind load models. Two aspects are investigated: (1) how considering the mean steady configuration in the aerodynamic stability calculation; and (2) the effects of load nonlinearities on structural response. A quasi-steady load model is adopted, which is able to deal with the considered problems by using experimental data easily available in the practice. By means of numerical examples, it is pointed out (1) that both the modifications in structural tangential stiffness and in the aerodynamic coefficients due to the mean steady deformation may affect the aeroelastic stability threshold and (2) that load linearization may produce an underestimation of the structural response.  相似文献   

4.
Limit Cycle Oscillations (LCOs) involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of geometric or aerodynamic nonlinearity. In this paper, a flexible half-span Delta wing is tested in a low speed wind tunnel in order to investigate its dynamic response. The wing is designed to be more flexible than the models used in previous research on the subject in order to expand the airspeed range in which LCOs occur. The experiments reveal that this wing features a very rich bifurcation behavior. Three types of bifurcation are observed for the first time for such an aeroelastic system: subcritical bifurcations, period-doubling/period-halving and nontypical bifurcations. They give rise to a great variety of LCOs, even at very low angles of attack. The LCOs resulting from the nontypical bifurcation display Hopf-type behavior, i.e. having fundamental frequencies equal to one of the linear modal frequencies. All of the other LCOs have fundamental frequencies that are unrelated to the underlying linear system modes.  相似文献   

5.
大跨度钢桁桥模型的精细化损伤定位模拟和试验研究   总被引:2,自引:0,他引:2  
在役大跨钢桁桥数日众多,其杆件往往较长,所以识别出损伤杆并找出局部损伤所处位置对安全评定和加固尤为重要。针对这一问题,参考我国在役钢桁梁桥,基于健康监测的试验目的和相似理论设计制作了贝雷梁式筒支钢桁桥Benchmark模型。根据其结构形式、具体尺寸,并经试验结果修正,建立了基准Matlab有限元模型。环境激励下,首先隔...  相似文献   

6.
7.
Borri  Claudio  Höffer  Rüdiger 《Meccanica》2000,35(1):1-15
Non-stationary aeroelastic wind force processes on a streamlined bridge deck are modelled for use within computations in the range of statistically stationary girder oscillation and for the mathematical investigation of the limit of aeroelastic stability. Time Domain (TD) methods, as the direct integration on a finite-element (FE) model, are applied in structural analyses for taking into consideration both geometric and physical nonlinearities. The FE method requires a continuous form of the force model, which permits an arbitrary discretization in time. The present model is based on continuous step response functions of Wagner-type, taking advantage of modern advances of that theory. Special emphasis is put on the continuity and the existence of equivalent representations in time and frequency domains. A realistic wind load model must include measured force functions and effects from the wind turbulence. For that reason, the force functions are calibrated in wind tunnel tests on section models in grid turbulence and boundary layer flow. The aeroelastic in-phase and out-of-phase forces are identified from highly accurate calibrations experiments on section models up to high frequencies which permits to decrease the time step increment. Turbulence effects on the aeroelastic coefficients are included in mean terms.  相似文献   

8.
A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment,five known damage patterns,including 3 brace damage cases and 2 joint damage cases,were simulated by removing braces and weakening beam-column connections in the structure. The limited acceleration response data generated by hammer impact were used for system identification,and modal parameters were extracted by using the eigensystem realization algorithm. In the first stage,the possible damaged locations are determined by using the damage index and the characteristics of the analytical model itself,and the extent of damage for those substructures identified at stage I is estimated in the second stage by using a second-order eigen-sensitivity approximation method. The main contribution of this paper is to test the two-stage method by using the real dynamic data of a complicated spatial model structure with limited sensors. The analysis results indicate that the two-stage approach is ableto detect the location of both damage cases,only the severity of brace damage cases can be assessed,and the reasonable analytical model is critical for successful damage detection.  相似文献   

9.
This paper details the study of the aeroelastic effect on modal interaction and dynamic behavior of acoustically excited square metallic panels with fully clamped edges using finite element method. The first-order shear deformation plate theory and von Karman nonlinear strain–displacement relationships are employed to consider the structural geometric nonlinearity caused by large vibration deflections. Piston aerodynamic theory and Gaussian white noise are used to simulate the aerodynamic load and the acoustic load, respectively. Motion equations are derived by the principle of virtual work in the physical coordinates and then transformed into the truncated modal coordinates with reduced orders. Runge–Kutta method is employed to obtain the system response, and the modal interaction mechanism is quantitatively valued by the modal participation distribution. Results show that in the pre-/near-flutter regions, in addition to the dominant fundamental resonant mode, the first twin companion antisymmetric modes can be largely excited by the aeroelastic coupling mechanism; thus, aeroelastic modal participation distribution and the spectrum response can be altered, while the dynamic behavior still exhibits linear random vibrations. In the post-flutter region, the dominant flutter motion can be enriched by highly ordered odd order super-harmonic motion occurs due to 1:1 internal resonances. Correspondingly, the panel dynamic behavior changes from random vibration to highly ordered motions in the fashion of diffused limit-cycle oscillations (LCOs). However, this LCOs motion can be affected by the intensifying acoustic excitation through changing the aeroelastic modal interaction mechanism. Accompanied with these changes, the panel can experience various stochastic bifurcations.  相似文献   

10.
对大跨度平屋面气弹模型的风致响应特性进行了多参数对比的风洞试验研究。采用预张力索网结构体系设计制作了可调刚度的大跨度平屋盖结构的气弹模型,在大气边界层风洞中对来流风速、屋盖刚度和墙面开孔等参数的影响进行屋盖风致响应对比试验。试验研究结果表明,屋盖风致加速度响应随着来流风速或墙面开孔面积的增大而增大,随着屋盖刚度或墙面孔隙率的增大而减小,屋盖与内压的耦合效应对屋盖响应的影响较大。  相似文献   

11.
王君  邓华夏  张进  于连栋 《实验力学》2016,31(2):165-174
振动模态分析和模态参数识别是动态测试的一个重要研究方向。模态参数在模型的修正、响应的预测、系统的健康检测及控制等方面有着重要的作用。但动态测试的不确定度分析,尤其是模态参数的不确定度的研究还十分缺乏。本文主要基于贝叶斯方法,通过傅立叶变换(FFT)建立时域数据和频域数据之间的对应关系。根据共振频带内的多个模态的响应数据得到相对应的模态参数,优化得到模态参数的最佳估计值,评定模态参数识别的不确定度。在固支梁的模态实验中,加速度传感器采集环境激励中的振动数据,运用贝叶斯法进行处理得到模态参数的最佳估计值。在此基础上,通过模态参数的最佳估计值,以及仪器的检定报告数据,结合合成不确度分析方法,系统分析了模态参数识别的不确定度。  相似文献   

12.
In high head Francis turbines and pump-turbines in particular, Rotor Stator Interaction (RSI) is an unavoidable source of excitation that needs to be predicted accurately. Precise knowledge of turbine dynamic characteristics, notably the variation of the rotor natural frequencies with rotation speed and added mass of the surrounding water, is essential to assess potential resonance and resulting amplification of vibrations. In these machines, the disk-like structures of the runner crown and band as well as the head cover and bottom ring give rise to the emergence of diametrical modes and a mode split phenomenon for which no efficient prediction method exists to date. Fully coupled Fluid–Structure Interaction (FSI) methods are too computationally expensive; hence, we seek a simplified modeling tool for the design and the expected-life prediction of these turbines.We present the development of both an analytical modal analysis based on the assumed mode approach and potential flow theory, and a modal force Computational Fluid Dynamics (CFD) approach for rotating disks in dense fluid. Both methods accurately predict the natural frequency split as well as the natural frequency drift within 7.9% of the values measured experimentally. The analytical model explains how mode split and drift are respectively caused by linear and quadratic dependence of the added mass with relative circumferential velocity between flexural waves and fluid rotation.  相似文献   

13.
The paper presents a computational and experimental study of the nonlinear aeroelastic response of a pre-tensed, high aspect-ratio, thin membrane strip. The goal of the study is to derive and validate a computational model that can be used for analysis and design of membrane strips, for the purpose of energy harvesting from flutter at low airspeeds. The mathematical model is based on a pre-tensed-beam model, accounting for bending and torsional stiffening effects due to pretension and large deformations. The aerodynamic model is a potential flow model. The equations of motion are written as a set of nonlinear ordinary differential equations, using Galerkin’s method, and are simulated numerically. The nonlinear aeroelastic model is used to study the oscillation characteristics of the membrane strip in the various stability regions. The effects of the initial pretension and non-linear stiffening on the energy-harvesting potential of the system are studied. The combined effect of the preload on the flutter onset speed, on the flutter frequency and amplitude, and on the loss of orbital stability, indicate that an optimal preload can be determined based on the intended airspeed range for energy harvesting. A series of wind tunnel tests are conducted, in which the flutter onset velocity, and the post-flutter frequencies and amplitudes are measured. Good agreement between the experimental data and computational results validate the computational model.  相似文献   

14.
圆柱壳结构被广泛应用于航空航天、船舶、汽车工程等领域.由于服役环境复杂,圆柱壳会受到随机激励作用,从而产生随机振动响应.本文针对考虑横向剪切变形和转动惯量的中厚圆柱壳,将虚拟激励法拓展到连续体结构,高效获得了各类随机激励下响应均方根的基准解.首先,开展了简支条件下中厚圆柱壳的自由振动分析,精确求得各阶自振频率和解析振型...  相似文献   

15.
In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.  相似文献   

16.
大跨径斜拉—悬索协作体系桥动力分析   总被引:10,自引:0,他引:10  
曾攀  钟铁毅等 《计算力学学报》2002,19(4):472-476493
斜拉-悬索协作体系桥作为一种新的超大跨径桥型,综合了悬索桥和斜拉桥的特点,国内外对这种桥型的研究尚少。本文根据空间有限元计算模型,对伶仃东航道斜拉-悬索协作体系桥设计方案进行了模态分析,分析了斜拉-悬吊协作体系桥的固有特性,讨论了不同主梁纵向约束方式和辅助墩的设置情况的影响,为此类桥型结构的动力性能分析提供了有价值的参考。  相似文献   

17.
A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear finite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aerodynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities significantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.  相似文献   

18.
斜拉桥拉索的振动问题一直是桥梁工程领域的研究热点。为揭示拉索大幅振动的力学机理,课题组建立了斜拉桥的全桥精细化模型,本文测试和研究了单频激励下的斜拉桥可能的非线性振动行为。首先,通过自由振动试验测试了模型的模态参数,并与两类有限元模型(OECS模型和MECS模型)进行对比,结果吻合良好。其次,试验研究了在单个竖向简谐激励下斜拉桥模型的非线性响应。研究发现:当激励频率与斜拉桥某阶全局模态频率接近时,主梁产生主共振,并引起多根长索产生大幅的参强振动;当激励频率与某根斜拉索面内一阶频率之比为1:2或者2:1时,可以观测到索中产生超谐波和亚谐波共振现象。  相似文献   

19.
单向悬挂屋盖结构的风致气弹耦合效应数值模拟   总被引:1,自引:1,他引:1  
综合运用计算流体力学和计算结构力学技术,建立了适用于索膜结构流固耦合风振分析的CFD数值模拟方法,并编制了相应的有限元计算程序。应用该程序对具有不同参数的大跨度单向屋盖结构进行了风振响应分析,探讨了来流风速、屋面质量和初始预张力等参数对结构流固耦合特性的影响。研究表明,由于屋盖前缘周期脱落的大尺度旋涡是诱导结构振动的主要原因,随着大尺度旋涡沿屋面向下游移动,其动能逐渐转化为结构变形能,使结构振动形态呈现明显的涡激振动特征。屋面质量、来流风速和初始预张力是影响结构流固耦合性能的主要参数。对于索膜结构,仅通过刚性模型来确定结构风压并进行风振响应分析,其结果是不可靠的。  相似文献   

20.
李晓玉  岳宝增 《力学学报》2019,51(5):1448-1454
以充液航天器为工程背景,借助多尺度方法研究刚--液耦合动力学系统非线性动力学特性.利用多维模态方法,将描述横向外激励下圆柱贮箱中液体非线性晃动的自由边界问题转换为液体模态系数相互耦合的有限维非线性常微分方程组.推导液体晃动产生的作用于贮箱壁的晃动力和晃动力矩的解析表达式,进而建立航天器刚体部分平动和液体晃动耦合的非线性动力学方程组.应用多尺度方法对刚--液耦合系统的动力学特性进行解析分析,通过固有频率的特征方程求解耦合系统固有频率,推导外激励频率接近耦合系统第一阶固有频率时液体晃动稳态解的幅值频率响应方程.结合数值方法,研究了液体晃动稳态解的幅值频率响应曲线和激励--幅值响应曲线.结果表明, 随充液比变化,液体晃动稳态解的幅值频率响应曲线会发生软、硬弹簧特性转换现象和"跳跃"现象;幅值频率响应曲线的软、硬弹簧特性转换点受重力加速度和弹簧刚度系数影响;以上所得研究结果表明,考虑非线性效应时的刚--液耦合系统动力学特性与传统的线性系统模型所显示的动力学特性具有本质区别.本文的研究工作对进一步分析充液航天器刚--液耦合非线性动力学特性具有重要参考价值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号