首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
纤维悬浮液搅拌流动的数值模拟   总被引:2,自引:0,他引:2  
由于缺乏适当的本构方程,对纤维悬浮液流动的研究一直局限于纤维的牛顿流体悬浮液。本文采用MUCM模型对作者最近提出的纤维Oldroyd-B流体悬浮液的本构方程作了改进,并对锚式桨搅拌槽的二维Oldroyd-B流体和牛顿流体纤维悬浮液搅拌流动作了数值模拟。模拟的结果表明,本文所用的模型和方法能有效地抑制过大局部应力的影响并合理地处理流体的记忆效应。  相似文献   

2.
Research efforts made so far to simulate fibre suspension flows are limited to fibre suspensions in Newtonian fluids. Though short fibre composites are mostly made of polymers, lack of suitable constitutive equations for fibre suspensions in viscoelastic fluids frustrates attempts to simulate flows of these suspensions. A preliminary work done by the author led to a constitutive equation for semiconcentrated fibre suspensions in the Oldroyd-B fluid. This paper describes the mathematical formulation of the flow problems for such a suspension and the numerical procedure to solve them. Some numerical results of flow past a sphere in a tube are also presented. This paper is supported by the University of Melbourne, the National Natural Science Foundation of China and Zhejiang Province.  相似文献   

3.
液晶高分子各向异性粘弹性流体本构方程理论   总被引:6,自引:0,他引:6  
韩式方 《力学学报》2001,33(5):588-600
将液晶高分子-各向异性流体的本构方程,建立在Oldroyd随体导数观点基础上。推广上随机Oldroyd B流体模型,提出共转OldroydB流体模型,同时将微观结构的影响通过宏观参数表示出来,使在宏观理论中包含微观结构的贡献,即引入取向物质函数,非线性各向异性黏度函数和各向异性松弛时间及推迟时间等,表征取向运动对黏度和松弛及推迟现象的影响,在此基础上开展了一类新的液晶高分子-Oldroyd型本构方程理论,由该类型本构方程得出的物质函数,液晶高分子流体的第一、第二法向应力差与实验结果一致,解释了液晶高分子溶液的第一、第二法向应力差的特殊流变学行为。  相似文献   

4.
本文从连续介质力学的基本原理出发,建立了微极流体与经典流体两相流动的非线性扩散理论。给出了混合流体本构方程的一般形式。对单相流体、单相微极流体及稀悬浮体三种特殊情形,得到了具体形式的二阶非线性本构方程,并同已有的理论进行了比较。  相似文献   

5.
IntroductionAnelectrorheologicalfluid (ER)consistsofasuspensionofthedielectricparticlesinaliquidoflowdielectricconstantandlowviscosity .Itsapparentviscosityincreasesdramaticallyinthepresenceofanappliedelectricfield .Thephenomenonisreversible.Uponelectric…  相似文献   

6.
A numerical model for predicting the flow and orientation state of semi-dilute, rigid fiber suspensions in a tapered channel is presented. The effect of the two-way flow/fiber coupling is investigated for low Reynolds number flow using the constitutive model of Shaqfeh and Fredrickson. An orientation distribution function is used to describe the local orientation state of the suspension and evolves according to a Fokker–Plank type equation. The planar orientation distribution function is determined along streamlines of the flow and is coupled with the fluid momentum equations through a fourth-order orientation tensor. The coupling term accounts for the two-way interaction and momentum exchange between the fluid and fiber phases. The fibers are free to interact through long range hydrodynamic fiber–fiber interactions which are modeled using a rotary diffusion coefficient, an approach outlined by Folgar and Tucker. Numerical predictions are made for two different orientation states at the inlet to the contraction, namely a fully random and a partially aligned fiber orientation state. Results from these numerical predictions show that the streamlines of the flow are altered and that velocity profiles change from Jeffery–Hamel, to something resembling a plug flow when the fiber phase is considered in the fluid momentum equations. This phenomenon was found when the suspension enters the channel in either a pre-aligned, or in a fully random orientation state. When the suspension enters the channel in an aligned orientation state, fiber orientation is shown to be only marginally changed when the two-way coupling is included. However, significant differences between coupled and uncoupled predictions of fiber orientation were found when the suspension enters the channel in a random orientation state. In this case, the suspension was shown to align much more quickly when the mutual coupling was accounted for and profiles of the orientation anisotropy were considerably different both qualitatively and quantitatively.  相似文献   

7.
黏弹流体流动的数值模拟研究进展   总被引:5,自引:1,他引:4  
综述了黏弹流体流动数值模拟的研究进展,突出介绍近十年来有限元法在黏弹流体流动数值模拟研究中取得的成果,通过动量方程的适当变形和本构方程离散权函数的合理选择,可以显著增强数值计算的稳定性。得到较高Weissenberg数下的解,同时文中对黏弹流体流动数值模拟中本构方程的应用、非等温情况和三维空间下的研究进行了介绍。  相似文献   

8.
The problem of peristaltic transport of non-Newtonian fluid represented by the constitutive equation for a Johnson–Segalman fluid is analyzed for the case of a planar channel. The fluid is electrically conducting. The walls of the channel are electrically insulated and are transversely displaced by an infinite, harmonic travelling wave of long wavelength. The general solution of the non-linear equation resulting from the momentum equation is constructed for all values of Weissenberg number. The perturbation solution is also obtained. Some graphs are plotted for interesting physical parameters and discussed.  相似文献   

9.
A constitutive equation theory of Oldroyd fluid B type, i.e. the co-rotational derivative type, is developed for the anisotropic-viscoelastic fluid of liquid crystalline (LC) polymer. Analyzing the influence of the orientational motion on the material behavior and neglecting the influence, the constitutive equation is applied to a simple case for the hydrodynamic motion when the orientational contribution is neglected in it and the anisotropic relaxation, retardation times and anisotropic viscosities are introduced to describe the macroscopic behavior of the anisotropic LC polymer fluid. Using the equation for the shear flow of LC polymer fluid, the analytical expressions of the apparent viscosity and the normal stress differences are given which are in a good agreement with the experimental results of Baek et al. For the fiber spinning flow of the fluid, the analytical expression of the extensional viscosity is given. The project supported by the National Natural Science Foundation of China (19832050 and 10372100)  相似文献   

10.
We consider a generalization of the constitutive equation for an incompressible second order fluid, by including thermal and viscoelastic effects in the expression for the stress tensor. The presence of the histories of the strain rate tensor and its gradient yields a non-simple material, for which the laws of thermodynamics assume a appropriate modified form. These laws are expressed in terms of the internal mechanical power which is evaluated, using the dynamical equation for the fluid. Generalized thermodynamic constraints on the constitutive equation are presented. The required properties of free energy functionals are discussed. In particular, it is shown that they differ from the standard Graffi conditions. Various free energy functionals, which are well-known in relation to simple materials, are generalized so that they apply to this fluid. In particular, expressions for the minimum free energy and a more recently introduced explicit functional of the minimal state are proposed. Derivations of various formulae are abbreviated if closely analogous proofs already exist in the literature.  相似文献   

11.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A simple microstructure model is used to describe a fluid-filled open-cell foam. In the simplest case it consists of parallel elastic plates with gaps between them, which are filled with a Newtonian fluid. We assume that the load applied to this model material is uniaxial. The constitutive equation is formulated with the pressure of the fluid as an inner variable. The model yields an evolutional equation for the fluid pressure which itself is a field equation, that is a partial differential equation in time and space coordinates. This differential equation is solved for an instantaneously applied constant load and for a harmonically oscillating load. The solution of the differential equation, in combination with the constitutive equation leads to a relation between mean applied load and global strain of the test specimen. Finally, we obtain the creep compliance and the complex modulus of the foam material, respectively. The influence of different geometries of the foam and of different material behaviour of the matrix and fluid on the creep compliance and the complex modulus is discussed.  相似文献   

13.
The purpose of this paper is to study the dynamic behavior of soft ground including a porous layer by considering the porosity change. In order to take the porosity change into account, the concept of the volume fraction, which has been proposed in continuum mechanics, is introduced. The constitutive equations presented by Bowen are applied to the analysis of the porous media. According to Bowen's theory, the porosity is considered as a variable called the volume fraction and has its own constitutive equation. The constitutive equation of the volume fraction has thermoelastic equation coefficients and is determined by the strains of the solid and the fluid. This means that the compressibilities of the solid and the fluid are considered. When the special condition is assumed, Bowen's theory can contain Biots's theory, which has been applied in earthquake engineering. The wave propagation in the ground including a porous layer, modeled by Bowen's theory, is studied and compared with that of Biot's theory. One-dimensional attenuation and surface amplitude are calculated. The effect of the volume fraction is discussed with respect to the compressibilities of the solid and the fluid.  相似文献   

14.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

15.
The response under small amplitude oscillatory deformations of a suspension of non-Brownian spheres dispersed in a viscoelastic fluid is investigated. The correspondence principle of linear viscoelasticity is used to derive a simple constitutive model from a model for a suspension in a Newtonian liquid. The theory predicts that for a specific particulate system the concentration dependence of the viscoelastic properties should collapse to a single master curve when the values are normalized with those of the carrier fluid alone. Measurements with the micro-Fourier rheometer using oscillatory squeeze flow are carried out on two suspensions of 60 and 80 μm sized particles dispersed in polymeric fluid and in silicon oil, and the master curve is verified. Received: 27 April 1999/Accepted: 15 October 1999  相似文献   

16.
A comparative evaluation of existing rate-type constitutive equations is provided for a viscoelastic fluid undergoing accelerated flow. To this end, accurate point velocity and stress birefringence data previously obtained by laser Doppler anemometry and stress birefringence are utilized. For each constitutive equation, the numerical values of constants which yield the best fit with experimental data are determined via non-linear regression analysis. The best agreement between experimental and calculated normal stress differences is obtained with the White-Metzner equation. The success of this equation is attributed to the deformation rate dependence of its viscosity and time constant.  相似文献   

17.
哑铃式聚合物分子模型流变学数值研究   总被引:3,自引:1,他引:2  
范西俊 《力学进展》1990,20(1):11-23
本文介绍了求解哑铃式分子模型位形空间分布函数扩散方程的数值方法,以及用这种方法计算的若干分子模型的流变性质。在通常情况下,将这一方法与求解流动守恒方程的边界元法相结合,便有可能用一个得不到本构方程的分子模型去代替连续介质力学本构方程,来模拟聚合物流体的复杂流动。本文还讨论了这一方法某些令人感兴趣的特点。   相似文献   

18.
This paper presents finite element analysis of non-Newtonian fluid flow in 2-d branching channel. The Galerkin method and mixed finite element method are used. Here the fluid is considered as incompressible, non-Newtonian fluid with Oldyord differential-type constitutive equation. The non-linear algebraic equation system which is formulated with finite element method is solved by means of continuous differential method. The results show that finite element method is suitable for the analysis of non-Newtonian fluid flow with complex geometry.  相似文献   

19.
The numerical computation of viscoelastic fluid flows with differential constitutive equations presents various difficulties. The first one lies in the numerical convergence of the complex numerical scheme solving the non-linear set of equations. Due to the hybrid type of these equations (elliptic and hyperbolic), geometrical singularities such as reentrant corner or die induce stress singularities and hence numerical problems. Another difficulty is the choice of an appropriate constitutive equation and the determination of rheological constants. In this paper, a quasi-Newton method is developed for a fluid obeying a multi-mode Phan-Thien and Tanner constitutive equation. A confined convergent geometry followed by the extrudate swell has been considered. Numerical results obtained for two-dimensional or axisymmetric flows are compared to experimental results (birefringence patterns or extrudate swell) for a linear low density polyethylene (LLDPE) and a low density polyethylene (LDPE).  相似文献   

20.
韩式方 《力学学报》1993,25(2):213-217
提出“准衰退记忆”新概念,发展了非牛顿流体扰动本构理论,并研究了粘弹流体拉伸流动的不稳定性规律  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号