首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
This paper aims at presenting the complete metrological problem associated to the thermomechanical characterization of materials. With this purpose in view, we first present a model based on irreversible thermodynamics that allows straightforward formulation of the set of the required state laws. Then, the state law, which links both entropy and temperature variables, is used within an entropy balance. It leads to the heat equation allowing for the identification of the different contributions involved in the apparent Thermomechanical Heat Source (THS). This THS is measured during the tensile experiment of a semicrystalline polymer, thanks to the monitoring of in-situ infrared temperature fields and the subsequent application of numerical reconstruction algorithms. Both stress-strain and THS-strain curves obtained experimentally over the same representative elementary volume are used simultaneously to identify the parameters of the behavioral model. The results first show that the model is able to describe the measured THS. Secondly, they allow for a clear analysis of various thermomechanical contributions (thermoelastic effect, total pure intrinsic dissipation, entropic couplings contribution reflecting microstructure transformations), which can be very helpful in understanding microscopic deformation phenomena.  相似文献   

2.
Summary The main objective of the paper is the investigation of the influence of the anisotrophy and plastic spin effects on criteria for adiabatic shear band localization of plastic deformation. A theory of thermoplasticity is formulated within a framework of the rate-type covariance material structure with a finite set of internal state variables. The theory takes into consideration such effects as plastic non-normality, plastic-induced anisotropy (kinematic hardening), micro-damage mechanism, thermomechanical coupling and plastic spin. The next objective of the paper is to focus attention on cooperative phenomena in presence of the plastic spin, and the discussion on the influence of synergetic effects on localization criteria. A particular constitutive law for the plastic spin is assumed. The necessary condition for a localized plastic deformation region to be formed is obtained. This condition is accomplished by the assumption that some eigenvalues of the instantaneous adiabatic acoustic tensor vanish. A procedure has been developed which allows us to discuss two separate groups of effects on the localization phenomenon along a shear band. Plastic spin, spatial covariance and kinematic hardening effects are investigated at an isothermal process in an undamaged solid. In the second case, an adiabatic process in a damaged solid is discussed when the spatial covariance terms and the plastic spin are neglected. Here the thermomechanical coupling, micro-damage mechanism and kinematic hardening effects are examined. For both cases, the criteria for adiabatic shear band localization are obtained in an exact analytical form. Particular attention is focused on the analysis of the following effects: (i) plastic non-normality; (ii) plastic spin; (iii) covariant terms; (iv) plastic strain-induced anisotropy; (v) micro-damage mechanism; (vi) thermomechanical couplings. Cooperative phenomena are considered, and synergetic effects are investigated. A discussion of the influence of the plastic spin, kinematic hardening and covariant terms on the shear band localization conditions is presented. A numerical estimation of the effects discussed is given. Received 24 April 1997; accepted for publication 23 December 1997  相似文献   

3.
Two strain localization modes: the Piobert-Lüders band propagation and the development of necking, were investigated in uniaxial tensile tests for a low alloyed and low carbon steel. These two macroscopic localization phenomena were simultaneously monitored by speckle interferometry (ESPI) and acoustic emission (AE). The coupling of these two experimental techniques gives complementary information about strain localization features and mechanisms. For Lüders bands, it was found that the acoustic activity heard during the travel of the Piobert-Lüders band varies in closely correlated to the tensile force fluctuations, the relations between strain rate, band velocity, band width and plastic strain were investigated. Although the strain rate in the wake of the wave front is not always zero, the acoustic activity remains concentrated in the wave front itself. For necking, the acoustic activity is found to decrease regularly through the homogeneous plasticity stage and the diffuse necking stage and then increases when the localized necking starts, while ESPI patterns show a gradual strain concentration.  相似文献   

4.
Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results.  相似文献   

5.
This work is concerned with incorporating the kinematic and stress effects of excess dislocations in a constitutive model for the elastoplastic behavior of crystalline materials. The foundation of the model is a three term multiplicative decomposition of the deformation gradient in which the two classical terms of plastic and elastic deformation are included along with an additional term for long range strain due to the collective effects of excess dislocations. The long range strain is obtained from an assumed density of Volterra edge dislocations and is directly related to gradients in slip. A new material parameter emerges which is the size the region about a continuum point that contributes to long range strains.Using Hookean elasticity, the stress at a point is linearly related to the sum of the elastic plus the long range strain fields. However, the driving force for slip is postulated to be due only to the elastic stress so that the long range stress is a back stress in the constitutive relationship for plastic deformation. A consistent balance of the total deformation rate with the three proposed mechanisms of deformation leads to a set of differential equations that can be solved for the elastic stress, rotation and pressure which then implicitly defines the material state and equilibrium stress. Results from the simulation of a tapered tensile specimen demonstrate that the constitutive model exhibits isotropic and kinematic type hardening effects as well as changes in the pattern of plastic deformation and necking when compared to a material without slip gradient effects.  相似文献   

6.
In this paper, we present a thermomechanical framework which makes use of the internal variable theory of thermodynamics for damage-coupled finite viscoplasticity with nonlinear isotropic hardening. Damage evolution, being an irreversible process, generates heat. In addition to its direct effect on material's strength and stiffness, it causes deterioration of the heat conduction. The formulation, following the footsteps of Simó and Miehe (1992), introduces inelastic entropy as an additional state variable. Given a temperature dependent damage dissipation potential, we show that the evolution of inelastic entropy assumes a split form relating to plastic and damage parts, respectively. The solution of the thermomechanical problem is based on the so-called isothermal split. This allows the use of the model in 2D and 3D example problems involving geometrical imperfection triggered necking in an axisymmetric bar and thermally triggered necking of a 3D rectangular bar.  相似文献   

7.
The main objective of this paper is to study the evolution of the necking zone in a flat specimen during a tensile test. Two approaches are used and compared:
  • –An experimental investigation of the strain rate distribution with Electronic Speckle Pattern Interferometry (ESPI).
  • –A numerical analysis with a thermodynamically consistent constitutive model that couples strongly isotropic continuum damage (CDM) and the elastoplastic behavior.
It is shown that strain rate maps are, for both approaches, relevant to investigate the development of the X-shape pattern that occurs during necking evolution. In particular, this pattern can be clearly observed on maps of the minimum determinant of the acoustic tensor. It appears even when damage values are low and the problem is still elliptic.It is shown that ESPI and CDM modeling are able to give a coherent picture of the phenomena that occur during neck development from the onset of instability to localize necking, in particular on localization bands angles and widths. In particular, physically meaningful information which is seldom considered such as band width evolution or strain rate distribution will be extracted from the analysis.  相似文献   

8.
A combined theoretical/experimental approach accurately quantifying post-necking hardening phenomena in ductile sheet materials that initially exhibit diffuse necking in tension is presented. The method is based on the minimization of the discrepancy between the internal and the external work in the necking zone during a quasi-static tensile test. The main focus of this paper is on the experimental validation of the method using an independent material test. For this purpose, the uniaxial tube expansion test is used to obtain uniaxial strain hardening behavior beyond the point of maximum uniform strain in a tensile test. The proposed method is used to identify the post-necking hardening behavior of a cold rolled interstitial-free steel sheet. It is demonstrated that commonly adopted phenomenological hardening laws cannot accurately describe all hardening stages. An alternative phenomenological hardening model is presented which enables to disentangle pre- and post-necking hardening behavior. Additionally, the influence of the yield surface on the identified post-necking hardening behavior is scrutinized. The results of the proposed method are compared with the hydraulic bulge test. Unlike the hydraulic bulge test, the proposed method predicts a decreased hardening rate in the post-necking regime which might be associated with probing stage IV hardening. While inconclusive, the discrepancy with the hydraulic bulge test suggests differential work hardening at large plastic strains.  相似文献   

9.
Transformation induced plasticity is defined as the plastic flow arising from solid state phase transformation processes involving volume and/or shape changes without overlapping the yield surface. This phenomenon occurs in shape memory alloys (SMAs) having significant influence over their macroscopic thermomechanical behavior. This contribution presents a macroscopic three-dimensional constitutive model to describe the thermomechanical behavior of SMAs including classical and transformation induced plasticity. Comparisons between numerical and experimental results attest the model capability to capture plastic phenomena. Both uniaxial and multiaxial simulations are carried out.  相似文献   

10.
We propose a behavioral modeling that takes into account the thermomechanical couplings accompanying the phase transition in single-crystal CuZnAl samples. The goal of this model is to put forward the significant role played by the heat diffusion in the propagation mode of the phase change fronts. Numerical simulations showed the existence of such a phase change front and predicted the calorimetric and kinematic effects accompanying its propagation. In particular, an inversion of the propagation way during a creep test and caused by an increase of the room temperature was correctly simulated by the model. To cite this article: A. Chrysochoos et al., C. R. Mecanique 331 (2003).  相似文献   

11.
12.
大变形扭转塑性硬化的实验和仿真研究   总被引:10,自引:0,他引:10  
赵慧娟  庄茁  郑泉水 《力学学报》2002,34(5):804-811
通过拉伸和扭转实验以及理论分析发现:在扭转实验中,当等效名义伸长率达到 286%时发生扭断,在此之前无明显局部化现象出现;相比较而言,单轴拉伸实验中的试件在颈缩失稳断裂时标距的最大伸长率仅为 29%.因此,用实心圆柱的扭转实验作为研究低碳钢这类弹塑性材料在大变形特征下的更为有效的基本实验,而以单轴拉伸实验作为补充是十分必要的.并通过数值模拟对在扭转过程中弹性核演变的历史进行了分析.  相似文献   

13.
对Gurson本构方程作了初步的研究,并对圆柱光滑拉伸试件在颈缩阶段用Gurson本构方程做了大应变弹塑性有限元分析。讨论了颈缩区空穴形核、扩张、静水应力以及材料软化的问题,初步揭示了空穴的演化过程和材料的破坏机理。有限元分析的结果表明,颈缩阶段空穴长大聚合机理非常显著,而形核作用相对较弱。  相似文献   

14.
This paper deals with the equilibrium problem in nonlinear dissipative inelasticity of damaged bodies subject to uniaxial loading and its main purpose is to show the interesting potentialities offered by the damage theory in modeling the necking and neck propagation phenomena in polymeric materials. In detail, the proposed mechanical model is a two-phase system, with the same constitutive law but with different levels of damage for each phase. Despite its simplicity, it is shown that the model can straightforwardly reproduce the overall load–elongation curve provided by experimental tensile tests by involving only five parameters of clear physical meaning.  相似文献   

15.
In this paper, basing on the general equations of axisymmetric plastic problems deduced in ref. [11], and employing perturbation technique, the asymptotic analysis for the necking problem is given. The result will provide knowledge of distribution of stress and strain in whole plastic region, thus, it will lead to a better understanding of the necking phenomena in a tension specimen, such as the cup-cone type fracture.Communicated by Chien Wei-zang.  相似文献   

16.
Tensile tests on three high-strength steels exhibiting Lüders band propagation are carried out at room temperature and under quasi-static loading conditions. Displacement and temperature fields on the surface of the flat samples are measured by digital image correlation and digital infrared thermography, respectively. The true stress versus true strain curves were calculated from the displacement data, while the thermal data were used to estimate the heat sources using the local heat diffusion equation. Based on these measurements the stored and dissipated energies were estimated up to diffuse necking. A thermodynamically consistent elastic-plastic constitutive model including the von Mises yield criterion, the associated flow rule and two non-linear isotropic hardening variables is applied to describe the behaviour of the high-strength steels. It is shown that this simple model is able to reproduce both the local behaviour, such as the power associated to heat sources, and the global behaviour, such as Lüders band propagation and stored and dissipated energies. It is further shown that the ratio of dissipated power to plastic power varies during plastic straining and that this variation is captured reasonably well in the numerical simulations.  相似文献   

17.
This paper deals with a numerical formulation for coupled thermoplastic problems including phase-change phenomena. The final goal is to get an accurate, efficient and robust numerical model, allowing the numerical simulation of solidification processes in the metal casting industry. Some of the current issues addressed in the paper are the following. A fractional step method arising from an operator split of the governing differential equations has been used to solve the nonlinear coupled system of equations, leading to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong operator split design constraint is introduced, by requiring that the elastic and plastic entropy, as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of the model has been consistently derived within a thermodynamic framework. The constitutive behavior has been defined by a thermoelastoplastic free energy function, including a thermal multiphase change contribution. Plastic response has been modeled by a J2 temperature dependent model, including plastic hardening and thermal softening. A brief summary of the thermomechanical frictional contact model is included. The numerical model has been implemented into the computational Finite Element code COMET developed by the authors. A numerical assessment of the isentropic and isothermal operator splits, regarding the nonlinear stability behavior, has been performed for weakly and strongly coupled thermomechanical problems. Numerical simulations of solidification processes show the performance of the computational model developed.  相似文献   

18.
正交各向异性韧性材料应力-应变关系   总被引:2,自引:1,他引:2  
万建松  岳珠峰 《力学学报》2003,35(4):493-497
采用大变形弹塑性有限元方法分析了各向同性和正交各向异性韧性材料光滑圆棒拉伸试件的颈缩问题.首先给出了采用计算机模拟确定各向同性韧性材料真实应力-应变曲线的具体方法;对正交各向异性韧性材料的分析表明,颈缩截面呈椭圆形,其长短轴方向的等效塑性应变基本上均匀分布,与Bridgman假设一致;轴向拉伸载荷-位移曲线与其它两方向的各向异性参数关系不大.在此基础上,建议了一种确定正交各向异性韧性材料真实应力-应变曲线的方法.  相似文献   

19.
Three-dimensional molecular dynamics simulations for mechanical properties of copper nanowires at finite temperatures were conducted with the Embedded-atom method (EAM). The stable free-relaxation state was simulated for a rectangular cross-section copper nanowire. The stress–strain curve under extension loading, elastic modulus, yielding strength and plastic deformation were studied. The results demonstrate that the strain-rate scale for nanowire is different from that for the bulk, and an explanation is presented. The dislocation movements corresponding to the plastic deformation are clearly depicted through transient atomic images. The necking and break-up phenomena are observed. This study can give more fundamental understanding of nanoscale machines from atomistic motions and contribute to the design, manufacture and manipulation of nano-devices.  相似文献   

20.
When a laminate of a thin metal film on a tough polymer substrate is stretched, the metal film may rupture at strains ranging from a few percent to a few tens of percent. This variation in the ductility of the metal film is modulated by the adhesion of the metal/polymer interface. To study this modulation, here we use the finite element method to simulate the co-evolution of two processes: debonding along the interface and necking in the metal film. We model the interface as an array of nonlinear springs, and model the metal and the polymer as elastic–plastic solids. The simulation shows that necking of the film is accommodated mainly by interfacial sliding, rather than interfacial opening. Depending on the resistance of the interface to sliding, the metal film can exhibit three types of tensile behavior: the film slides and ruptures at a small strain by forming a single neck, the film slides and deforms to a large strain by forming multiple necks, and the film deforms uniformly to a very large strain without sliding and necking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号