首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A method is developed for estimating the effects of microdefect interaction on the effective elastic properties of heterogeneous solids. An effective medium is defined to calculate the global effective elastic moduli of brittle materials weakened by distributed microcracks. Each microcrack is assumed to be embedded in an effective medium, the compliance of which is obtained from the dilute concentration method without accounting for interaction. The present scheme requires no iteration; it can account for microcrack interaction with sufficient accuracy. Analytical solutions are given for several two- and three-dimension problems with and without anisotropy.  相似文献   

2.
计算微裂纹损伤材料有效模量的一种简单方法   总被引:7,自引:0,他引:7  
冯西桥  余寿文 《力学学报》2001,33(1):102-108
给出了一种基于Taylor模型的有效介质方法。用以计算微裂纹相互作用对有效本构关系的影响,该方法假设每一个微裂纹位于一种有效介质之中,该有效介质的弹性模量由不考虑微裂纹相互作用的Taylor模型计算、和自洽方法相比,这种方法计算简单,而且结果更准确。  相似文献   

3.
闫相桥 《力学学报》2006,38(1):112-117
提出了平面弹性介质中主裂纹与微裂纹相互作用问题的有效数值计算 方法. 通过把适于单一裂纹的Bueckner原理扩充到含有多裂纹的一般体系,将原问题分解 为承受远处载荷不含裂纹的均匀问题,和在远处不承受载荷但在裂纹面上承受面力的多裂纹 问题. 于是,以应力强度因子作为参量的问题可以通过考虑后者(多裂纹问题)来解决,而 利用提出的杂交位移不连续法,这种多裂纹问题是容易数值求解的. 列举 Cai和 Faber为评价主裂纹与微裂纹相互作用问题的近似方法而列举的算例,说明 该数值方法对分析平面弹性介质中主裂纹与微裂纹相互作用问题既简单又非常有效.  相似文献   

4.
We investigate the influence of distributed microcracks on the overall diffusion properties of a porous material using the self-similar cascade continuum micromechanics model within the framework of mean-field homogenization and computational homogenization of diffusion simulations using a high-resolution pixel finite element method. In addition to isotropic, also anisotropic crack distributions are considered. The comparison of the results from the cascade continuum micromechanics model and the numerical simulations provides a deeper insight into the qualitative transport characteristics such as the influence of the crack density on the complexity and connectivity of crack networks. The analysis shows that the effective diffusivity for a disordered microcrack distribution is independent of the absolute length scale of the cracks. It is observed that the overall effective diffusivity of a microcracked material with the microcracks oriented in the direction of transport is not necessarily higher than that of a material with a random orientation of microcracks, independent of the microcrack density.  相似文献   

5.
The strain energy density factor approach is used in conjunction with a micromechanics model to investigate the condition and direction of shear failure for brittle rock subjected to triaxial compression. Moderate confinement in addition to localized deformation and damage are considered. Quantified are the effects of the various geometric and load parameters that involve the interaction of microcrack, friction and the confining pressure such that the path of the wing crack is taken into account. The influence of all microcracks with different orientations are introduced into the constitutive relation. The closed-form solution for the complete stress–strain relation of rock containing microcracks is obtained. It is shown that the complete stress–strain relationship includes linear, nonlinear hardening, rapid stress drop and strain softening effects. The theoretical results show that deviation of the direction of wing cracks from the line of the pre-existing crack decreases with increasing confinement pressure and friction coefficient. Theoretical predictions and experimental results show good agreement.  相似文献   

6.
A micromechanical model is proposed to describe both stable and unstable damage evolution in microcrack-weakened brittle rock material subjected to dynamic uniaxial tensile loads. The basic idea of the present model is to classify the constitution relationship of rock material subjected to dynamic uniaxial tensile loads into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress-strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

7.
Investigated is a crack problem for an array of collinear microcracks in composite matrix. Inclusions are situated in between the neighbouring microcracks tips and exhibit different elastic properties than matrix. The problem is solved using the technique of distributed dislocations. A developed approximate fundamental solution for a single dislocation lying in a general point between inclusions is employed in the distribution of continuously distributed dislocation to cracks modelling. Stress intensity factor is calculated for various cracks/inclusions geometries and elastic moduli mismatches. Stability and/or instability of the straight microcrack paths is investigated for slowly growing microcracks with inclusions located in between the neighbouring microcracks tips. Applications to periodic microcrack tunnelling and microcracks weakening ahead of the main crack are discussed.  相似文献   

8.
A micromechanics-based model is proposed to describe unstable damage evolution in microcrack-weakened brittle rock material. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress–strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to be consistent with the experimental results.  相似文献   

9.
We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of heterogeneities of arbitrary shape. The general integral equations connecting the stress and strain fields in the point being considered with the stress and strain fields in the surrounding points are obtained for the random fields of heterogeneities. The method is based on a recently developed centering procedure where the notion of a perturbator is introduced and statistical averages are obtained without any auxiliary assumptions such as, e.g., effective field hypothesis implicitly exploited in the known centering methods. Effective elastic moduli and the first statistical moments of stresses in the heterogeneities are estimated for statistically homogeneous composites with the general case of both the shape and inhomogeneity of the heterogeneities moduli. The explicit new representations of the effective moduli and stress concentration factors are built by the iteration method in the framework of the quasicristallite approximation but without basic hypotheses of classical micromechanics such as both the EFH and “ellipsoidal symmetry” assumption. Numerical results are obtained for some model statistically homogeneous composites reinforced by aligned identical homogeneous heterogeneities of noncanonical shape. Some new effects are detected that are impossible in the framework of a classical background of micromechanics.  相似文献   

10.
Summary  The problem of the extension of subinterface microcracks in an infinite metal/ceramic bimaterial solid is studied. For the microcrack growth, the values of the M-integral are calculated under the assumption of a self-similar growth. First, the role that the M-integral plays in a metal/ceramic bimaterial solid with growing subinterface cracks is analyzed. It is concluded that an inherent relation exists between the value of the M-integral and the decrease of the effective elastic moduli for a bimaterial solid with growing subinterface microcracks. Second, it is concluded that mutual amplification and shielding effects exist during the microcrack extension, while they are substantially dependent on the increment of the microcrack length as well as the geometry of the microcrack arrangement under given loads. This strong mutual shielding effect of interacting microcracks makes the microcrack extension become increasingly difficult, and may stop the growth of the microcracks even under constant loads. Also, it is concluded that for a certain microcrack growth, the value of the M-integral in metal/ceramic bimaterial solid is always larger than that in homogeneous brittle solid for the same crack configuration. This means that the same microcrack growth in the former case shows lower stability than that in the latter one, due to the existence of a ductile phase. Received 3 May 2001; accepted for publication 27 June 2002 This work was supported by the Chinese National Nature Science Foundation (Grant 19472053) and supported by the Doctorate Foundation of Xi'an Jiaotong University (Grant DFXJU2000-15).  相似文献   

11.
Micromechanics models have been developed for the determination ofthe elastic moduli of microcracked solids based on different approaches andinterpretations,including the dilute or non-interacting solution,the Mori-Tanakamethod,the self-consistent method,and the generalized self-consistent method.It isshown in the present study that all these micromechanics models can be unified withinan energy-equivalence framework,and that they differ only in the way in which themicrocrack opening and sliding displacements are evaluated.Relevance to thedifferential methods and the verification of these models are discussed.  相似文献   

12.
各向同性弹性损伤的双标量描述   总被引:24,自引:1,他引:24  
损伤状态的描述是损伤力学中仍未完善解决的基本问题.我们旨在对此问题就最简单的一种情形——各向同性弹性损伤,进行较为全面的研究.首先,指出了古典各向同性损伤理论中,基于应变等效假设,用单个标量损伤变量描述损伤状态的局限性.然后,建立了一个用两个标量损伤变量描述的各向同性弹性损伤模型.此模型解除了古典理论的局限,能完全描述各向同性弹性损伤,并且得到本文数值实验的验证.最后,将本文模型与现有细观力学结果连接,给出了宏细观损伤变量之间的关系,使得细观量可以通过宏观量来反映,建立了一个用细观损伤材料常数描述细观缺陷特征的损伤本构模型  相似文献   

13.
One of fundamental but difficult problems in damage mechanics is the formulation of the effective constitutive relation of microcrack-weakened brittle or quasi-brittle materials under complex loading, especially when microcrack interaction is taken into account. The combination of phenomenological and micromechanical damage mechanics is a promising approach to constructing an applicable damage model with a firm physical foundation. In this paper, a quasi-micromechanical model is presented for simulating the constitutive response of microcrack-weakened materials under complex loading. The microcracking damage is characterized in terms of the orientation domain of microcrack growth (DMG) as well as a scalar microcrack density parameter. The DMG describes the complex damage and its evolution associated with microcrack growth, while the scalar microcrack density factor defining the isotropic magnitude of damage yields an easy calculation of the effects of microcrack interaction on effective elastic moduli. Project supported by the National Natural Science Foundation of China (19891180).  相似文献   

14.
This paper is devoted to micromechanical modeling of isotropic damage in brittle materials. The damaged materials will be considered as heterogeneous media composed of solid matrix weakened by isotropically distributed microcracks. The original contribution of the present work is to provide a proper micromechanical thermodynamic formulation for damage-friction modeling in brittle materials with the help of Eshelby’s solution to matrix-inclusion problems. The elastic and plastic strain energy involving unilateral effects will be fully determined. The condition of microcrack opening–closure transition will be determined in both strain-based and stress-based forms. The effect of spatial distribution of microcracks will also be taken into account. Further, the damage evolution law is formulated in a sound thermodynamic framework and inherently coupled with frictional sliding. As a first phase of validation, the proposed micromechanical model is finally applied to reproduce basic mechanical responses of ordinary concrete in compression tests.  相似文献   

15.
One considers linearly elastic composite media, which consist of a homogeneous matrix containing a statistically homogeneous random set of aligned homogeneous heterogeneities of non canonical shape. Effective elastic moduli as well as the first statistical moments of stresses in the phases are estimated. The explicit new representations of the effective moduli and stress concentration factors are expressed through some building block described by numerical solution for one heterogeneity inside the infinite medium subjected to homogeneous remote loading. The method uses as a background a new general integral equation proposed in Buryachenko, 2010a, Buryachenko, 2010b, which incorporates influence of stress inhomogeneity inside the inclusion on the effective field and makes it possible to reconsider basic concepts of micromechanics such as effective field hypothesis, quasi-crystalline approximation, and the hypothesis of “ellipsoidal symmetry”. The results of this reconsideration are quantitatively estimated for some modeled composite reinforced by aligned homogeneous heterogeneities of non canonical shape. Some new effects are detected that are impossible in the framework of a classical background of micromechanics.  相似文献   

16.
Several micromechanics models for the determination of composite moduli are investigated in this paper, including the dilute solution, self-consistent method, generalized self-consistent method, and Mori-Tanaka's method. These micromechanical models have been developed by following quite different approaches and physical interpretations. It is shown that all the micromechanics models share a common ground, the generalized Budiansky's energy-equivalence framework. The difference among the various models is shown to be the way in which the average strain of the inclusion phase is evaluated. As a bonus of this theoretical development, the asymmetry suffered in Mori-Tanaka's method can be circumvented and the applicability of the generalized self-consistent method can be extended to materials containing microcracks, multiphase inclusions, non-spherical inclusions, or non-cylindrical inclusions. The relevance to the differential method, double-inclusion model, and Hashin-Shtrikman bounds is also discussed. The application of these micromechanics models to particulate-reinforced composites and microcracked solids is reviewed and some new results are presented.  相似文献   

17.
The problem to determine the effective elastic moduli and velocities of elastic wave propagation in transversely isotropic solid containing aligned spheroidal inhomogeneities (solid grains, vugs and micro-cracks) has been solved using the self-consistent scheme known as effective medium approximation (EMA). Since a solution of so-called one-particle problem is a base for each self-consistent method, we solved this problem as a first step for spheroidal inhomogeneity in a transversely isotropic medium. In contrast to the known solution of this problem by Lin and Mura we obtained the expressions for the strain field inside inclusion in the explicit form (without quadratures). The obtained solution was used then in the symmetric variant of the EMA where each component of the system was considered as spheroid with its own aspect ratio. This approach was applied to simulate the properties of the rocks containing isolated pores and micro-cracks. For connected fluid-filled pores we used the anisotropic variant of the Gassmann theory. The results of the calculations, obtained for the effective elastic moduli, have been compared with the experimental data and theoretical simulations of the other authors. Unlike many other rock mechanics theories, EMA approximation gives correct elastic moduli values even in the nondilute concentration of inhomogeneities. The comparison of the experimental data for oriented crack system with the EMA predictions indicates their good correspondence.  相似文献   

18.
颗粒增强复合材料有效性能的三维数值分析   总被引:9,自引:0,他引:9  
方岱宁  齐航 《力学学报》1996,28(4):475-482
将细观力学和计算力学方法相结合用以确定复合材料中的局部和平均应力-应变场.对旋转体和非旋转体颗粒增强复合材料的有效模量进行了三维有限元数值计算,数值与实验结果对比表明,该方法是有效的、可靠的.分析了颗粒的排列分布、颗粒取向和颗粒的几何形状对有效模量的影响.数值结果表明,颗粒的排列对有效轴向弹性模量影响较大.颗粒的取向和颗粒的形状对有效性能的影响也是显著的  相似文献   

19.
杨卫  张宿林 《力学季刊》1997,18(3):189-195
微裂纹串接为宏观灾难性裂纹的过程取决于相邻微裂纹的强相互作用。微裂纹的分布规律影响材料的强度和韧性。本文研究简单的共线微裂纹构型,确定由于微裂纹长度和韧度尺寸的统计分布所产生的影响。研究结果预计了脆性材料的尺度效应,即对于相同密度的微裂纹分布,大尺寸构件的强度比小尺寸构件要低。计算还表明脆性体的强度随微裂纹分布函数标准方差的增加而减小。  相似文献   

20.
One considers a linear thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous random set of ellipsoidal uncoated or coated heterogeneities. It is assumed that the stress–strain constitutive relations of constituents are described by the nonlocal integral operators, whereas the equilibrium and compatibility equations remain unaltered as in classical local elasticity. The general integral equations connecting the stress and strain fields in the point being considered and the surrounding points are obtained. The method is based on a centering procedure of subtraction from both sides of a known initial integral equation their statistical averages obtained without any auxiliary assumptions such as, e.g., effective field hypothesis implicitly exploited in the known centering methods. In a simplified case of using of the effective field hypothesis for analyzing composites with one sort of heterogeneities, one proves that the effective moduli explicitly depend on both the strain and stress concentrator factor for one heterogeneity inside the infinite matrix and does not directly depend on the elastic properties (local or nonlocal) of heterogeneities. In such a case, the Levin’s (1967) formula in micromechanics of composites with locally elastic constituents is generalized to their nonlocal counterpart. A solution of a volume integral equation for one heterogeneity subjected to inhomogeneous remote loading inside an infinite matrix is proposed by the iteration method. The operator representation of this solution is incorporated into the new general integral equation of micromechanics without exploiting of basic hypotheses of classical micromechanics such as both the effective field hypothesis and “ellipsoidal symmetry” assumption. Quantitative estimations of results obtained by the abandonment of the effective field hypothesis are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号