首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Stress redistribution induced by excavation of underground engineering and slope engineering results in the unloading zone in parts of surrounding rock masses. The mechanical behaviors of crack-weakened rock masses under unloading are different from those of crack-weakened rock masses under loading. A micromechanics-based model has been proposed for brittle rock material undergoing irreversible changes of their microscopic structures due to microcrack growth when axial stress is held constant while lateral confinement is reduced. The basic idea of the present model is to classify the constitution relation of rock material into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The closed-form explicit expression for the complete stress–strain relation of rock materials containing cracks under unloading is obtained. The results show that the complete stress–strain relation and the strength of rock materials under unloading depend on the crack spacing, the fracture toughness of rock materials, orientation of the cracks, the crack half-length and the crack density parameter.  相似文献   

2.
A micro-mechanics-based model is proposed to investigate the rate-dependent constitutive relation for crack-weakened rock masses subjected to dynamic compressive loads. The present micro-mechanical model reveals that the nucleation, growth and coalescence of sliding cracks dominate the failure and macroscopic properties of crack-weakened rock masses subjected to dynamic compressive loads. The interactions among multiple parallel sliding cracks in crack-weakened rock masses subjected to dynamic compressive loads are examined asymptotically in an explicit and quantitative manner in order to reveal fully their so-called shielding and magnification effects on the stress–strain relation. Based on the micro-mechanical framework and the asymptotic analysis, analytical upper and lower bounds are proposed for the rate-relation for rock masses containing multiple rows of echelon cracks subjected to dynamic compressive loads. The factors that affect the rate-dependent properties of crack-weakened rock masses have been analyzed. The strain energy density factor approach, which is related to crack growth velocity and dynamic fracture toughness of rock material, is employed in the analysis. The rate-dependent constitutive relation of crack-weakened rock masses is derived from micro-mechanical framework and the asymptotic analysis. The closed-form explicit expression for the rate-dependent constitutive relation of rock masses containing echelon cracks subjected to dynamic compressive loads is obtained. Finally, the present model is used to analyze the complete stress–strain relation and strength for jointed rock masses at shiplock slope of the Three Gorges Dam.  相似文献   

3.
A micromechanics-based model is proposed to describe unstable damage evolution in microcrack-weakened brittle rock material. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress–strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to be consistent with the experimental results.  相似文献   

4.
Microcracks have great significance for shear strength of brittle rock in compression. A major challenge of this area is to establish the correlation of microcracks and macroscopic shear strength. A new micro–macro method is presented to predict the shear strength of brittle rock in compression. This method incorporates the microcrack model suggested by Ashby, Mohr–Coulomb failure criterion and a crack-strain relation. This crack–strain relation is presented to link the crack growth and axial strain by combining the micro and macro definitions from rock damage. The shear strength and stress–strain relationship of Jinping marble are theoretically investigated in detail. The rationality of this suggested method is verified by using the experimental results founded on Jinping marble. Effects of the initial microcrack size, friction coefficient and confining pressure on internal friction angle, cohesion, and shear strength are also discussed.  相似文献   

5.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing an elliptic crack is considered. It is assumed that the body is under an external magnetic field perpendicular to the crack plane. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the elliptic crack are studied. Formulas are given for the stress intensity factors for the force and magnetic fields near the crack tip  相似文献   

6.
7.
轴向压缩作用下,脆性岩石侧向应力严重影响岩石力学特性。侧向压应力影响下的轴向压缩岩石力学行为已经得到广泛研究,然而侧向拉应力对轴向压缩岩石力学行为影响研究很少。本文基于脆性岩石翼型裂纹扩展模型中,初始裂纹面法向应力与剪切应力的正负方向为判断依据,研究了侧向拉应力对轴向压缩力学行为的影响。发现恒定的侧向拉应力作用下,轴向压缩应力渐进变化过程中,脆性岩石内部细观初始裂纹面的法向应力只能为压缩应力,不存在拉应力情况。分析了从侧向压应力到拉应力转化过程中,脆性岩石轴向压应力与细观裂纹扩展长度关系、轴向压应力与轴向应变关系、岩石峰值强度、裂纹启裂应力及初始弹性模量的变化规律。并分析了侧向拉应力对岩石蠕变裂纹长度、裂纹速率、轴向应变及应变率演化曲线,以及对蠕变失效时间及稳态蠕变应变率的影响。讨论了侧向拉压应力突变转化以及侧向拉应力分级增大对轴向压缩岩石蠕变演化行为影响。该研究为深部地下工程围岩稳定性评价提供了一定理论依据。  相似文献   

8.
The stress–strain state and local buckling of thin plates with an oblique edge crack are studied. An expression for critical stresses is derived  相似文献   

9.
It is of important significance to study the coalescence mechanism of splitting failure of crack-weakened rock masses under compressive loads. In this paper, a simplified mechanism of crack propagation, in which the crack grows along the direction of maximum principal compressive stress, is proposed. Thus, only mode I is taken into account in the formulation and solution. On the basis of the near crack line analysis method, the elastic–plastic stress field near the crack line is analyzed, and the law that the length of the plastic zone along the crack line is varied with an external loads have been established by the matching condition of the elastic- plastic fields on the boundary, the coalescence stress and the strength properties of rock masses have been determined. The solution is a function of the geometry of the crack array. The results show that the crack coalescence depends on the crack interface friction coefficient, the sliding crack spacing, orientation of the cracks, and the crack half-length. The conclusions are of important significance for rock mass engineering.  相似文献   

10.
含微裂纹弹性体的应力应变关系   总被引:1,自引:0,他引:1  
本义建立了考虑裂纹闭合和裂纹表面摩擦影响的含微裂纹弹性体的应力应变关系,给出了柔度张量增量的显式表达式。对于二维平面应力和平面应变状态,给出了等效工程弹性系数。数值计算结果表明,裂纹闭合和裂纹面摩擦对裂纹体的应力应变关系和等效工程弹性系数有重要影响。  相似文献   

11.
含微裂纹弹性体的应力应变关系   总被引:1,自引:0,他引:1  
本义建立了考虑裂纹闭合和裂纹表面摩擦影响的含微裂纹弹性体的应力应变关系,给出了柔度张量增量的显式表达式。对于二维平面应力和平面应变状态,给出了等效工程弹性系数。数值计算结果表明,裂纹闭合和裂纹面摩擦对裂纹体的应力应变关系和等效工程弹性系数有重要影响。  相似文献   

12.
A technique based on a refined iterative theory and the numerical method of local variations is developed and used to determine the stress–strain state of transversely isotropic shallow shells and plates. All the components of the stress–strain state and boundary-layer effects are taken into account. The solutions are analyzed for accuracy and convergence.  相似文献   

13.
Finite element analyses were conducted in order to evaluate the mode I and mode II stress intensity factors for inclined edge cracks under cyclic contact load under rolling and rolling–sliding condition. The SIF range depends on crack orientation, crack length to Hertzian contact zone half-width ratio, friction between the crack faces and friction on the contact surface. The results were combined in two compact functions that determine the ΔKI and ΔKII values. The crack propagation mode and direction were investigated using both the maximum stress criterion and the minimum strain energy density criterion. The results are displayed in graph form, which allows a fast evaluation of the crack growth condition.  相似文献   

14.
In this paper, we propose a micromechanical analysis of damage and related inelastic deformation in saturated porous quasi brittle materials. The materials are weakened by randomly distributed microcracks and saturated by interstitial fluid with drained and undrained conditions. The emphasis is put on the closed cracks under compression-dominated stresses. The material damage is related to the frictional sliding on crack surface and described by a local scalar variable. The effective properties of the materials are determined using a linear homogenization approach, based on the extension of Eshelby’s inclusion solution to penny shaped cracks. The inelastic behavior induced by microcracks is described in the framework of the irreversible thermodynamics. As an original contribution, the potential energy of the saturated materials weakened by closed frictional microcracks is determined and formulated as a sum of an elastic part and a plastic part, the latter entirely induced by frictional sliding of microcracks. The influence of fluid pressure is accounted for in the friction criterion through the concept of local effective stress at microcracks. We show that the Biot’s effective stress controls the evolution of total strain while the local Terzaghi’s effective stress controls the evolution of plastic strain. Further, the frictional sliding between crack lips generates volumetric dilatancy and reduction in fluid pressure. Applications of the proposed model to typical brittle rocks are presented with comparisons between numerical results and experimental data in both drained and undrained triaxial tests.  相似文献   

15.
The aim of this study is to expand the application of the nonlinear softened truss model for membrane elements on beam–column joints. The softened truss model employs three equations for equilibrium, three for compatibility and four equations for the constitutive laws of materials. The constitutive equations for both the concrete and steel are based on the actually observed stress–strain relationships. The model has three important attributes. The first is the nonlinear association of stress and strain. The second, and conceivably more noteworthy, is the softening of concrete in compression due to tensile strains in the perpendicular direction. The third is that the influence of the concrete tensile stresses between cracks on the average stress–strain relationship for reinforcing steel and the influence of orthogonal tensile stresses on the compression stress–strain relationship for concrete can be considered in the model. For beam–column joints, one of the most important factors influencing the behaviour is certainly the bond conditions of the beam bars. In this study, the softened truss model is expanded to take into account the influence of this important factor into account. In the revised version of the model, full strain compatibility does not exist between the steel reinforcement and the surrounding concrete and thus the factors influencing the bond-slip between concrete and reinforcement is adequately considered. The improved softened truss model is applied on 51 exterior beam–column joint tests. It is apparent from the results that the revised model gives very accurate predictions of the shear strength of joints and is an improvement on the existing version of the model proposed by Hsu.  相似文献   

16.
The mechanism of pitting caused by rolling contact is analyzed using the fracture mechanics approach. The governing factors are the initial crack length, crack angle, contact force, friction, strain hardened layer, and the hydraulic pressure of trapped fluid acting on the crack surface. Mode I and II stress intensity and the strain energy density factors are calculated by application of the two-dimensional finite element method. The strain energy density criterion is applied to show that shallow angle crack under small rolling contact force and friction enhances the probability of pitting under the roller’s running surface. The presence of a strain hardened surface layer also tends to affect the fracture behavior. The analytical results agree well with the experimental observations.  相似文献   

17.
The stress–strain state of an infinite isotropic magnetically soft ferromagnetic body with a spheroidal inclusion is analyzed. It is assumed that the body is in an external magnetic field. The basic stress–strain characteristics and the induced magnetic field near and inside the inclusion are analyzed. The plots and the table presented show how the total magnetoelastic and Maxwell stresses near and inside the inclusion depend on the ratio of the spheroid axes, the latitude angle, and the magnetic induction when the medium and the inclusion are dissimilar materials.  相似文献   

18.
The formulation for thermal stress and electric displacement in an infinite thermopiezoelectric plate with an interface and multiple cracks is presented. Using Green's function approach and the principle of superposition, a system of singular integral equations for the unknown temperature discontinuity defined on each crack face is developed and solved numerically. The formulation can then be used to calculate some fracture parameters such as the stress–electric displacement and strain energy density factor. The direction of crack growth for many cracks in thermopiezoelectric bimaterials is predicted by way of the strain energy density theory. Numerical results for stress–electric displacement factors and crack growth direction at a particular crack tip in two crack system of bimaterials are presented to illustrate the application of the proposed formulation.  相似文献   

19.
The magnetoelastic problem for a transversely isotropic ferromagnetic body with a parabolic crack in the plane of isotropy is solved explicitly. The body is in an external magnetic field, which is perpendicular to the plane of isotropy. The field induces elastic strains and a magnetic field in the body. The characteristics of the stress–strain distribution and induced magnetic field are determined; and their singularities in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented  相似文献   

20.
Investigated in this work is the plastic deformation of representative mesovolumes of the steel 65Cr13 samples. They were surface-hardened by ion nitriding. An evolution of inner structure and stress–strain state in the mesovolumes with different thickness of surface-hardened layer was analyzed under tension and compression. A site of the working part of a cross-section of the sample was examined in the area of neck formation. To simulate the two-dimensional behavior of the deformed steel samples, two formulations are given. They include the strain hardening effects and crack formation. The results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号