首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用颅内二维Willis环模型,对血管在不同程度狭窄情况下的血液流动进行稳态计算与分析,计算中采用了进出口处的压力边界条件和无滑移固壁条件.计算得到完整环和交通动脉缺失情况下各进出口血管流量变化曲线.所获结果表明,完整Willis环中,前交通动脉的代偿能力在左颈内动脉狭窄率达到25%以后才能得到比较明显的体现;后交通动脉缺失情况下前交通动脉的代偿能力变弱;Willis环的前部和后部有相对独立性,只有在主要进口动脉严重阻塞的时候,单侧的独立性才丧失.  相似文献   

2.
针对左颈内动脉在无狭窄和完全阻塞情况下交通动脉中的血液瞬态流动采用颅内Willis环二维模型进行计算分析.计算得到完整环、交通动脉大脑前动脉缺失情况下各交通动脉血液流量变化趋势.结果表明交通动脉中血液流量变化最大的情况为:右侧大脑前动脉缺失同时左颈内动脉阻塞;在左(右)大脑前动脉近端缺失时前交通动脉中血液流量变化趋势与左(右)大脑前动脉远端相同;左侧后交通动脉在左颈内动脉狭窄比较严重时血液流动方向就会发生改变;在完整环、左颈内动脉阻塞时前交通动脉中的血液流量大于后交通动脉.  相似文献   

3.
血流动力学数值模拟与动脉粥样硬化研究进展   总被引:4,自引:0,他引:4  
血流动力学因素被认为与动脉粥样硬化等病理改变密切相关。目前血流动力学数值模拟的对象,主要集中于分支动脉、弯曲动脉以及因血管内膜增生而导致的局部狭窄动脉,这些都是动脉粥样硬化多发的病灶部位。精确的血流动力学数值模拟,必须依赖于解剖精确的血管几何模型和生理真实的血流与管壁有限变形的非线性瞬态流-固耦合。只有在“虚拟血液流动”的基础上,综合考虑血管内的壁面剪应力、粒子滞留时间和氧气的跨血管壁传输等多种因素,血流动力学的数值模拟才能真正有助于人们理解动脉粥样硬化的血流动力学机理,才有可能应用于有关动脉疾病的外科手术规划中。   相似文献   

4.
高智 《力学学报》2012,44(3):505-512
利用数值摄动算法, 通过扩散格式数值摄动重构把对流扩散方程的2阶中心差分格式(2-CDS)重构为高精度高分辨率格式, 解析分析和模型方程计算证实了新格式的高精度不振荡性质. 新格式是把物理黏性使流动光滑化的扩散运动规律引入2-CDS 中的结果. 该法显然与构建高级离散格式的常见方法不同. 证实: 数值摄动重构中引入扩散运动规律的结果格式与引入对流运动规律(下游不影响上游的规律)的结果格式一致, 说明对离散方程的数值摄动运算, 在维持原格式结构形式不动的条件下, 不仅能提高格式精度和稳健性, 且可揭示对流离散运动规律与扩散离散运动规律之间的内在关联;同时证实, 文中提出和使用的上、下游分裂方法是构建高精度不振荡离散格式的一个有效方法.  相似文献   

5.
刘赵淼  南斯琦  史艺 《力学学报》2015,47(6):1058-1064
基于中等严重程度冠状动脉病变模型,应用流固耦合方法数值研究了中等严重程度面积狭窄率(AS=50%,65%,75%)和病变长度(LL= 0 mm,15 mm,20 mm) 对血流动力学参数的影响.研究发现:随着AS与LL的增大,病变血管分支的壁面剪应力变化愈加剧烈,狭窄段下游的壁面剪应力值逐渐降低,狭窄段下游回流区的长度呈"S"型增长,模型最大剪切速率呈抛物线型增长, 压力分布曲线显著下降.血流动力学参数结果表明, 中等严重程度面积狭窄率和病变长度均是可能引发血栓的因素,临床上应予以重视.   相似文献   

6.
血液在轴对称狭窄直圆管内的流动在动脉系内,由于血管内皮细胞的异常增生造成动脉狭窄,这是许多研究人员重视的问题。动脉狭窄和血液流动间存在耦合作用,许多学者在进行病理研究同时,对狭窄区血液流场进行理论分析,探索动脉狭窄的血液动力学依据。因问题的复杂性,绝大多数所研究的力学模型是轴对称狭窄直圆柱刚性管内牛顿流体的流动。  相似文献   

7.
肿瘤血管生成(Tumor-induced Angiogenesis)是指在实体肿瘤细胞诱导下毛细血管的生长以及肿瘤中血液微循环的建立。肿瘤内血液、组织液等流体流动在肿瘤药物输运过程中扮演着重要作用,而这些流动受到肿瘤内微血管网络结构的直接影响。目前要获得精确的肿瘤内外的毛细血管拓扑结构存在一定困难,因此给肿瘤内的血液动力学研究带来困难。本文根据肿瘤内外的复杂生理特性,建立肿瘤内外血管生成的二维离散模型,在获得相对真实的毛细血管网络拓扑结构基础上对肿瘤内的血液动力学进行初步计算,数值计算的结果加深了对肿瘤的复杂生理特性的理解,同时也给肿瘤内的药物输运给予一定的提示。  相似文献   

8.
颈动脉分支的血流动力学数值模拟   总被引:7,自引:0,他引:7  
采用有限元法数值模拟颈动脉分支的血流动力学。根据在体测量的实际尺寸来构造颈动脉分支的几何模型,以保持模型的解剖精确度;利用在体测量的颈内动脉和颈外动脉流量波形以及主颈动脉的压力波形来确定数值计算的边界条件,以保持数值计算的生理真实性。关注的重点是颈动脉窦内的局部血流形态、二次流和壁面剪应力。在心脏收缩的减速期和舒张期的某些时刻,颈动脉窦中部外侧壁面附近产生了流动分离,形成了一个低速回流区。该流动分离是瞬态的,导致了壁面剪应力的振荡,其振荡范围在-2~6dyn/cm^2之间。同时,颈动脉窦中部横截面内的二次流存在于整个心动周期,最大的二次流速度为同时刻轴向速度平均值的1/3左右。  相似文献   

9.
冠状动脉旁路移植管搭桥术后,常会产生血管再狭窄,导致手术失败,。这与移植管的几何结构及血流动力学是密切相关的。作为改进措施,作者提出了采用对称双路搭桥的设想。本文利用有限元分析方法,对冠状动脉搭桥术中对称双路移植管内的生理流动进行了数值仿真。计算了缝合区附近的流场、壁面切应力、压力等血流动力学因素在心动周期内的时空分布情况。计算结果表明,对称双路搭桥具有较好的血流动力学,可以改善血管流场状况和减轻再狭窄发生。这对临床手术计划是很有帮助和指导意义的。  相似文献   

10.
从弱可压缩水动力学方程出发,采用坐标变换的方法处理自由表面,建立了能够模拟有自由表面流动问题的定常、非定常的三维水动力学模型和对流扩散模型,模型采用浮湍流模型进行封闭,并对模型求解的数值方法进行了研究。  相似文献   

11.
摘要:为了计算动脉粥样硬化和局部斑块形成的堵塞对血管壁工作状态的影响,本文根据血液流动的连续性方程、运动方程及管壁运动方程,在给定了血压波形函数的基础上,求得了狭窄血管管壁的径向位移及环向应力。分析了不同狭窄程度对血管壁变形及应力的影响;给出了不同狭窄情况下及局部斑块硬化程度不同时,血管植入支架所需的作用力。从而计算出了植入支架后血管壁的径向位移及应力状态。本文的研究结果可供临床上对狭窄血管植入支架后的变形与受力分析,和支架的正确安放参考,可避免发生堵塞严重或血管过渡硬化时,由于安放支架不当而使发生血管破裂的医疗事故。  相似文献   

12.
Heat and fluid flow characteristics of blood flow in multi-stenosis arteries in the presence of magnetic field is considered. A mathematical model of the multi-stenosis inside the arteries is introduced. A finite difference scheme is used to solve the governing equations in terms of vorticity-stream function along with their boundary conditions. The effect of magnetic field and the degree of stenosis on wall shear stress and Nusselt number is investigated. It was found that magnetic field modifies the flow patterns and increases the heat transfer rate. The severity of the stenosis affects the wall shear stress characteristics significantly. The magnetic field torque will increase the thermal boundary layer thickness and the temperature gradient in the streaming blood, and hence increasing the local Nusselt number  相似文献   

13.
The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the erythrocytes in the core region as the Herschel-Bulkley material and plasma in the peripheral layer as the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit system of partial differential equations. The expressions for various flow quantities are obtained. It is found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis height increases. It is noted that the velocity increases, longitudinal impedance decreases as the amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the two-phase Herschel-Bulkley material are significantly lower than those of the single-phase Herschel-Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small diameter arteries with stenosis.  相似文献   

14.
Heat and mass transfer effects on Newtonian biomagnetic fluid of blood flow through a tapered porous artery with a stenosis is investigated. Governing equations have been modeled by treating blood as Newtonian biomagnetic fluid. The governing equations are simplified under the assumption of mild stenosis. Exact solutions have been evaluated for velocity, temperature, and concentration profiles. The effects of Newtonian nature of blood on velocity, temperature, concentration profile, wall shear stress, shearing stress at the stenosis throat and impedance of the artery are discussed graphically. Stream lines have been presented in last section of the article.  相似文献   

15.
Current theoretical investigation deals with mathematical model of unsteady non-Newtonian flow of blood through a stenosed artery. The flowing blood is considered as a viscoelastic fluid having shear-thinning rheology and characterized by generalised Oldroyd-B model. The arterial wall is considered to be rigid having cosine shaped stenosis in its lumen. The governing equations of motion accompanied by appropriate choice of the initial and boundary conditions are solved numerically by MAC (Marker and Cell) method and the results are checked for numerical stability with desired degree of accuracy. The quantitative analysis has been carried out finally which includes the respective profiles of the flow-field. The key factors like the wall shear stress and flow separation are also examined for further qualitative insight into the flow through arterial stenosis. The present results show quite consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.  相似文献   

16.
The problem of non-Newtonian and nonlinear blood flow through a stenosed artery is solved numerically where the non-Newtonian rheology of the flowing blood is characterised by the generalised Power-law model. An improved shape of the time-variant stenosis present in the tapered arterial lumen is given mathematically in order to update resemblance to the in vivo situation. The vascular wall deformability is taken to be elastic (moving wall), however a comparison has been made with nonlinear visco-elastic wall motion. Finite difference scheme has been used to solve the unsteady nonlinear Navier-Stokes equations in cylindrical coordinates system governing flow assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. The present analytical treatment bears the potential to calculate the rate of flow, the resistive impedance and the wall shear stress with minor significance of computational complexity by exploiting the appropriate physically realistic prescribed conditions. The model is also employed to study the effects of the taper angle, wall deformation, severity of the stenosis within its fixed length, steeper stenosis of the same severity, nonlinearity and non-Newtonian rheology of the flowing blood on the flow field. An extensive quantitative analysis is performed through numerical computations of the desired quantities having physiological relevance through their graphical representations so as to validate the applicability of the present model.  相似文献   

17.
Ali  A.  Hussain  M.  Anwar  M. S.  Inc  M. 《应用数学和力学(英文版)》2021,42(11):1675-1684

In this study, a mathematical model is formulated to examine the blood flow through a cylindrical stenosed blood vessel. The stenosis disease is caused because of the abnormal narrowing of flow in the body. This narrowing causes serious health issues like heart attack and may decrease blood flow in the blood vessel. Mathematical modeling helps us analyze such issues. A mathematical model is considered in this study to explore the blood flow in a stenosis artery and is solved numerically with the finite difference method. The artery is an elastic cylindrical tube containing blood defined as a viscoelastic fluid. A complete parametric analysis has been done for the flow velocity to clarify the applicability of the defined problem. Moreover, the flow characteristics such as the impedance, the wall shear stress in the stenotic region, the shear stresses in the throat of the stenosis and at the critical stenosis height are discussed. The obtained results show that the intensity of the stenosis occurs mostly at the highest narrowing areas compared with all other areas of the vessel, which has a direct impact on the wall shear stress. It is also observed that the resistive impedance and wall shear pressure get the maximum values at the critical height of the stenosis.

  相似文献   

18.
Arterial bifurcations are places where blood flow may be disturbed and slow recirculation flow may occur. To reveal the correlation between local oxygen transfer and atherogenesis, a finite element method was employed to simulate the blood flow and the oxygen transfer in the human carotid artery bifurcation. Under steady-state flow conditions, the numerical simulation demonstrated a variation in local oxygen transfer at the bifurcation, showing that the convective condition in the disturbed flow region may produce uneven local oxygen transfer at the blood/wall interface. The disturbed blood flow with formation of slow eddies in the carotid sinus resulted in a depression in oxygen supply to the arterial wall at the entry of the sinus, which in turn may lead to an atherogenic response of the arterial wall, and contribute to the development of atherosclerotic stenosis there. The project supported by the National Natural Science Research Council of China (10632010, 10572017, 30670517).  相似文献   

19.
The peristaltic flow of a non-Newtonian nanofluid with swimming oxytactic microorganisms through a space between two infinite coaxial conduits is investigated. A variable magnetic field is applied on the flow. The bioconvection flow and heat transfer in the porous annulus are formulated, and appropriate transformations are used, leading to the non-dimensionalized ruling partial differential equation model. The model is then solved by using the homotopy perturbation scheme. The effects of the germane parameters on the velocity profile, temperature distribution, concentration distribution, motile microorganism profile, oxytactic profile, pressure rise, and outer and inner tube friction forces for the blood clot and endoscopic effects are analyzed and presented graphically.It is noticed that the pressure rise and friction forces attain smaller values for the endoscopic model than for the blood clot model. The present analysis is believed to aid applications constituting hemodynamic structures playing indispensable roles inside the human body since some blood clotting disorders, e.g., haemophilia, occur when some blood constituents on the artery wall get confined away from the wall joining the circulation system.  相似文献   

20.
A mathematical model of unsteady non‐Newtonian blood flow together with the mass transfer through constricted arteries has been developed. The mass transport refers to the movement of atherogenic molecules, i.e. blood‐borne components, such as low‐density lipoproteins from flowing blood into the arterial walls or vice versa. The flowing blood is represented as the suspension of all erythrocytes assumed to be Eringen's micropolar fluid and the arterial wall is considered to be rigid having cosine‐shaped stenosis in its lumen. The mass transfer to blood is controlled by the convection–diffusion equation. The governing equations of motion accompanied by the appropriate choice of the boundary conditions are solved numerically by Marker and Cell method and the results obtained are checked for numerical stability with the desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow‐field and the mass concentration along with their distributions over the entire arterial segment as well. The key factors, such as the wall shear stress and Sherwood number, are also examined for further quantitative insight into the flow and the mass transport phenomena through arterial stenosis. The present results show consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号