首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Current theoretical investigation deals with mathematical model of unsteady non-Newtonian flow of blood through a stenosed artery. The flowing blood is considered as a viscoelastic fluid having shear-thinning rheology and characterized by generalised Oldroyd-B model. The arterial wall is considered to be rigid having cosine shaped stenosis in its lumen. The governing equations of motion accompanied by appropriate choice of the initial and boundary conditions are solved numerically by MAC (Marker and Cell) method and the results are checked for numerical stability with desired degree of accuracy. The quantitative analysis has been carried out finally which includes the respective profiles of the flow-field. The key factors like the wall shear stress and flow separation are also examined for further qualitative insight into the flow through arterial stenosis. The present results show quite consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.  相似文献   

2.
Of concern in the paper is an analytical study of pulsatile blood flow in an irregular stenosed arterial segment through a mathematical model. The model is two-dimensional and axisymmetric with an outline of the stenosis obtained from a three-dimensional casting of a mildly stenosed artery [L. Back, Y. Cho, D. Crawford, R. Cuffel, Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man, J. Biomech. Eng. 106 (1984) 48–53]. The combined influence of an asymmetric shape and surface irregularities of the constriction has been explored in a computational study of blood flow through arterial stenosis with 48% areal occlusion. The moving wall of the artery is included to be anisotropic, linear, viscoelastic, incompressible circular cylindrical membrane shell. The effect of the surrounding connective tissues on the motion of the arterial wall is also paid due attention. Results are also obtained for a smooth stenosis model and also for a stenosis model representative by the cosine curve. An extensive quantitative analysis has been performed in non-uniform non-staggered grids through numerical computations for the effect of surface irregularities on the flow velocity, the flux, the resistive impedance and on the wall shear stress through their graphical representations so as to validate the applicability of such an improved mathematical model.  相似文献   

3.
An overview of present understanding of microstructure in flowing suspensions is provided. An emphasis is placed on how the microstructure leads to observable bulk flow phenomena unique to mixtures. The bridge between the particle and bulk scales is provided by the mixture rheology; one focus of the review is on work that addresses the connection between microstructure and rheology. The non-Newtonian rheology of suspensions includes the well-known rate dependences of shear thinning and thickening, which have influence on bulk processing of suspensions. Shear-induced normal stresses are also measured in concentrated suspensions and include normal stress differences, and the isotropic particle pressure. Normal stresses have been associated with shear-induced migration, and thus have influence on the ultimate spatial distribution of solids, as well as the flow rate during processing; a second focus is on these uniquely two-phase behaviors and how they can be described in terms of the bulk rheology. An important bulk fluid mechanical consequence of normal stresses is their role in driving secondary flows.  相似文献   

4.
The hemodynamic mechanism of rolling manipulation (RM) of traditional Chinese medical massage (TCMM) is investigated. An axisymmetrical nonlinear model and an arbitrary Lagrangian-Eulerian finite element method (ALE-FEM) with rezoning algorithm were introduced to study the viscous flow through an axisymmetrical rigid tube with axially moving stenosis to simulate the rolling manipulation. Flow rate and wall shear stress were obtained by solving complete Navier-Stokes equations numerically. The numerical results show that the stenosis moving frequency, namely the frequency of rolling manipulation, has great effect on the disturbance of flow and the wall shear stress. The stenosis coefficient, which characterizes the severity of the stenosis, another adjustable parameter in rolling manipulation, also shows the significant effect on flow rate and wall shear stress. These numerical results may provide some data that can be taken into consideration when massage is used in clinic.  相似文献   

5.
Dimensional analysis has been applied to an unsteady pulsatile flow of a shear-thinning power-law non-Newtonian liquid. An experiment was then designed in which both Newtonian and non-Newtonian liquids were used to model blood flow through a large-scale (38.5 mm dia.), simplified, rigid arterial junction (a distal anastomosis of a femorodistal bypass). The flow field within the junction was obtained by Particle Imaging Velocimetry and near-wall velocities were used to calculate the wall shear stresses. Dimensionless wall shear stresses were obtained at different points in the cardiac cycle for two different but dynamically similar non-Newtonian fluids; the good agreement between the measured dimensionless wall shear stresses confirm the validity of the dimensional analysis. However, blood exhibits a constant viscosity at high-shear rates and to obtain complete dynamic similarity between large-scale experiments and life-scale flows, the high-shear viscosity also needs to be included in the analysis. How this might be done is discussed in the paper.  相似文献   

6.
A mathematical model of unsteady non‐Newtonian blood flow together with the mass transfer through constricted arteries has been developed. The mass transport refers to the movement of atherogenic molecules, i.e. blood‐borne components, such as low‐density lipoproteins from flowing blood into the arterial walls or vice versa. The flowing blood is represented as the suspension of all erythrocytes assumed to be Eringen's micropolar fluid and the arterial wall is considered to be rigid having cosine‐shaped stenosis in its lumen. The mass transfer to blood is controlled by the convection–diffusion equation. The governing equations of motion accompanied by the appropriate choice of the boundary conditions are solved numerically by Marker and Cell method and the results obtained are checked for numerical stability with the desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow‐field and the mass concentration along with their distributions over the entire arterial segment as well. The key factors, such as the wall shear stress and Sherwood number, are also examined for further quantitative insight into the flow and the mass transport phenomena through arterial stenosis. The present results show consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Ali  A.  Hussain  M.  Anwar  M. S.  Inc  M. 《应用数学和力学(英文版)》2021,42(11):1675-1684

In this study, a mathematical model is formulated to examine the blood flow through a cylindrical stenosed blood vessel. The stenosis disease is caused because of the abnormal narrowing of flow in the body. This narrowing causes serious health issues like heart attack and may decrease blood flow in the blood vessel. Mathematical modeling helps us analyze such issues. A mathematical model is considered in this study to explore the blood flow in a stenosis artery and is solved numerically with the finite difference method. The artery is an elastic cylindrical tube containing blood defined as a viscoelastic fluid. A complete parametric analysis has been done for the flow velocity to clarify the applicability of the defined problem. Moreover, the flow characteristics such as the impedance, the wall shear stress in the stenotic region, the shear stresses in the throat of the stenosis and at the critical stenosis height are discussed. The obtained results show that the intensity of the stenosis occurs mostly at the highest narrowing areas compared with all other areas of the vessel, which has a direct impact on the wall shear stress. It is also observed that the resistive impedance and wall shear pressure get the maximum values at the critical height of the stenosis.

  相似文献   

8.
Attempts have been made to analyse the momentum and heat transfer characteristics in tortuous flow of non-Newtonian fluids such as suspensions and polymer solutions through tubes of diverging–converging geometry. The results of the study indicate that the transfer coefficients are significantly higher in such systems as compared to the conventional couette flow (through uniform cylindrical tubes). Moreover, the simultaneous increase in pressure drop due to the tortuous wall geometry has been observed to be relatively insignificant. Fluids with different rheological characteristics such as Bingham plastic fluids, pseudoplastic fluids, Ellis model fluids and fluids obeying Reiner–Philippoff rheology have been studied. The specific advantages of these geometries in providing enhanced performance efficiency have been effectively highlighted.  相似文献   

9.
In this paper, the pulsatile flow of blood through stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, assuming the blood to be represented by Herschel-Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow assuming the thickness of plug core region to be non-uniform changing with axial distance. An expression for the variation of plug core radius with time and axial distance is obtained. The variation of pressure gradient with steady flow rate is given. Also the variation of wall shear stress distribution as well as resistance to flow with axial distance for different values of time and for different values of yield stress is given and the results analyzed.  相似文献   

10.
The effect of disturbed flow on the mass transfer from arterial surface to flowing blood was studied numerically,and the results were compared with that of our previous work.The arterial wall was assumed to be viscoelastic and the blood was assumed to be incompressible and non-Newtonian fluid,which is more close to human arterial system.Numerical results indicated that the mass transfer from the arterial surface to flowing blood in regions of disturbed flow is positively related with the wall shear rates and it is significantly enhanced in regions of disturbed flow with a local minimum around the reattachment point which is higher than the average value of the downstream.Therefore,it may be implied that the accumulation of cholesterol or lipids within atheromatous plaques is not caused by the reduced efflux of cholesterol or lipids,but by the infiltration of the LDL(low-density lipoprotein) from the flowing blood to the arterial wall.  相似文献   

11.
《力学快报》2022,12(4):100360
The present article aims to investigate the Graetz-Nusselt problem for blood as a non-Newtonian fluid obeying the power-law constitutive equation and flowing inside the axisymmetric tube subjected to non-uniform surface heat flux. After the flow field is determined by solving the continuity and the momentum equations, the energy equation is handled by employing the separation of variables method. The resulting Eigen functions and Eigen values are numerically calculated using MATLAB built-in solver BVP4C. The analysis is first conducted for the situation of constant heat flux and subsequently generalized to apply to the case of sinusoidal variation of wall heat flux along the tube length, using Duhamel's Theorem. Furthermore, an approximate analytic solution is determined, employing an integral approach to solve the boundary layer equations. With respect to the comparison, the results of approximate solution display acceptable congruence with those of exact solution with an average error of 7.4%. Interestingly, with decreasing the power-law index, the discrepancy between the two presented methods significantly reduces. Eventually, the influences of the controlling parameters such as surface heat flux and power-law index on the non-Newtonian fluid flow's thermal characteristics and structure are elaborately discussed. It is found that switching from constant wall heat flux to non-uniform wall heat flux that sinusoidally varies along the tube length significantly improves the simulation's accuracy due to the better characterization of the heat transport phenomenon in non-Newtonian fluid flow through the tube. In the presence of sinusoidally varying wall heat flux with an amplitude of 200 W/m2and when the power-law index is 0.25, the maximum arterial wall temperature is found to be about 311.56 K.  相似文献   

12.
The method of characteristics, or fractional-flow theory, is extremely useful in understanding complex Enhanced Oil Recovery (EOR) processes and in calibrating simulators. One limitation has been its restriction to Newtonian rheology except in rectilinear flow. Its inability to deal with non-Newtonian rheology in polymer and foam EOR has been a serious limitation. We extend fractional flow methods for two-phase flow to non-Newtonian fluids in one-dimensional cylindrical flow, where rheology changes with distance from injection well. The fractional flow curve is then a function of position and we analyze the characteristic equations for two applications—polymer and foam floods. For polymer flooding, we present a semi-analytical solution for the changing fractional flow curve where characteristics and shocks collide. The semi-analytical solution is shown to give good agreement with the finite-difference simulation thus helping us understand the development and resolution of shocks. We discuss two separate cases of foam injection with or without preflush. We observe that the fractional flow solutions are more accurate than finite-difference simulations on a comparable grid and hence the method can be used to calibrate simulators. For SAG (alternating-slug) foam injection, characteristics and shocks collide, making the fractional-flow solution complex. Nonetheless, one can solve exactly for changing mobility near the well, to greater accuracy than with conventional simulation. The fractional-flow method extended to non-Newtonian flow can be useful both for its insights for scale-up of laboratory experiments and to calibrate computer simulators involving non-Newtonian EOR. It can also be an input to streamline simulations.  相似文献   

13.
The problem of linear stability of a non-Newtonian fluid film flowing down a vertical plane under the action of gravity is considered. The linear stability of steady-state flow with a plane free boundary and the nonlinear waves that arise if this flow is unstable are investigated. The results obtained for two rheological models, the power-law and Eyring fluids, are compared.  相似文献   

14.
A novel approach of combined mathematical and computational models has been developed to investigate the oscillatory two-layered flow of blood through arterial stenosis in the presence of a transverse uniform magnetic field applied. Blood in the core region and plasma fluid in the peripheral layer region are assumed to obey the law of Newtonian fluid. An analytical solution is obtained for velocity profile and volumetric flow rate in the peripheral plasma region and also wall shear stress. Finite difference method is employed to solve the momentum equation for the core region. The numerical solutions for velocity, flow rate and flow resistance are computed. The effects of various parameters associated with the present flow problem such as radially variable viscosity, hematocrit, plasma layer thickness, magnetic field and pulsatile Reynolds number on the physiologically important flow characteristics namely velocity distribution, flow rate, wall shear stress and resistance to flow have been investigated. It is observed that the velocity increases with the increase of plasma layer thickness. An increase or a decrease in the velocity and wall shear stress against the increase in the value of magnetic parameter (Hartmann number) and hematocrit is dependent on the value of t. An increase in magnetic field leads to an increase in the flow resistance and it decreases with the increase in the plasma layer thickness and pulsatile Reynolds number. The information concerning the phase lag between the flow characteristics and how it is affected by the hematocrit, plasma layer thickness and Hartmann number has, for the first time, been added to the literature.  相似文献   

15.
The phenomena of flow reduction and flow enhancement was observed in case of viscoelastic and viscoinelastic fluids flowing through packed beds, respectively. In this study, the pressure drop-flow rate behaviors for the flow of Newtonian (water), non-Newtonian viscoinelastic (Carboxy methyl cellulose solution in water, CMC) and viscoelastic (Polyacrylamide solution in water, PAA) fluids have been experimentally studied and pressure drop behavior compared with existing models for viscoinelastic and viscoelastic fluids. Based on the observed data, an appropriate empirical correlation for pressure drop prediction in case of non-Newtonian fluid flowing through packed bed has been proposed. The correlation predicts the data well to within a reasonable accuracy.  相似文献   

16.
格子玻尔兹曼方法(lattice Boltzmann method,LBM)能够直接计算局部剪切速率并可以达到二次精度,因此在非牛顿流动数值模拟中展现出一定优势。尽管已证实LBM 对于非牛顿流动的适用性,但是LBM 需要通过即时调节BGK(Bhatnagar-Gross-Krook)碰撞项中的松弛时间来实时反映黏度改变,当松弛时间接近1/2 时,迭代会出现数值不稳定现象。该文对LBM 在非牛顿流体研究中的进展进行了总结,介绍了增加数值稳定性的方法并对结果的精度进行了比较,在此基础上对LBM 在非牛顿研究中的进一步发展进行了展望。  相似文献   

17.
Hamed Shahmohamadi 《Meccanica》2012,47(6):1313-1323
The similarity transform for the steady free convection boundary layer flow of a non-Newtonian fluid (Casson model) with variable wall temperature on a horizontal plate gives a system of nonlinear ordinary differential equations which is solved analytically by applying a newly developed method namely the homotopy analysis method (HAM). The velocity and temperature profiles are obtained and the influence of Prandtl number and various physical parameters of the problem on these distributions are discussed in detail and are illustrated graphically through a set of graphs. The validity of our solutions is verified by the numerical results.  相似文献   

18.
In this paper, we discussed a mathematical model for two-layered non-Newtonian blood flow through porous constricted blood vessels. The core region of blood flow contains the suspension of erythrocytes as non-Newtonian Casson fluid and the peripheral region contains the plasma flow as Newtonian fluid. The wall of porous constricted blood vessel configured as thin transition Brinkman layer over layered by Darcy region. The boundary of fluid layer is defined as stress jump condition of Ocha-Tapiya and Beavers–Joseph. In this paper, we obtained an analytic expression for velocity, flow rate, wall shear stress. The effect of permeability, plasma layer thickness, yield stress and shape of the constriction on velocity in core & peripheral region, wall shear stress and flow rate is discussed graphically. This is found throughout the discussion that permeability and plasma layer thickness have accountable effect on various flow parameters which gives an important observation for diseased blood vessels.  相似文献   

19.
This paper presents an analytical study on the behavoiur of blood flow in an artery having a stenosis. This is basically formulated through the use of a suitable mathematical model. The arterial segment under consideration is simulated by an anisotropically elastic cylindrical tube filled with a viscous incompressible fluid representing blood. The analysis is carried out for an artery with mild local narrowing in its lumen forming a stenosis. Particular emphasis has been paid to the effect of the surrounding connective tissues on the motion of the arterial wall. Blood is treated as a Newtonian fluid. The analysis is restricted to propagation of small amplitude harmonic waves, generated due to the flow of blood whose wave length is large compared to the radius of the arterial segment. The effect of the shape of stenosis on the resistance to blood flow has been well illustrated quantitatively through numerical computations of the resulting expressions. A quantitative analysis is also made for the variation of the phase velocity, as well as the velocity of wave propagation and the flow rate, in order to illustrate the applicability of the model.  相似文献   

20.
In some reactors, thin fuel plates are cooled by water flowing through thin channels on either side of the plates. There is a need to know the amount of deformation in the fuel plates due to the coolant flow so that failures can be avoided. A verifiable solution to this problem in the past has not been available. An experimental-analytical solution to this problem for design purposes has been developed and is herein presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号