首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

2.
This paper gives the results of experimental determinations of the critical heat fluxes in the boiling of Liquid nitrogen in forced-flow conditions in the mass velocity range 2 · 103-40 · 103 kg/m2 · sec, pressure range 29 · 104–245 · 104 N/m2, and at underheatings corresponding to the onset of normal boiling crises.Notation q0 critical heat flux - r heat of vaporization - i enthalpy of flow corresponding to saturation point - i enthalpy of flow corresponding to liquid temperature - surface tension - density of liquid - density of saturated vapor - C f friction factor - Wg mass velocity - Fr* Froude number - g acceleration due to gravity  相似文献   

3.
A new technique for measuring the growth of instabilities on the surface of liquid jets flowing into gas is demonstrated. A collimated beam of white light illuminates the jet from behind, forming a shadow image. A pair of cylindrical lenses are arranged to provide different magnifications in the streamwise and cross-stream directions. A number of streamwise diameters and one cross-stream diameter are thus captured with maximum resolution in a single image on a charge-coupled device (CCD) electronic camera. A short-duration spark is used to freeze the jet motion. A mask representing the theoretical edge-response of the imaging system is digitally convolved with the cross-stream gray scale data to obtain sub-pixel resolution of the jet edge profile. The method is demonstrated using the well-known capillary jet instability and a ratio of streamwise to cross-stream magnifications of 40. Well-resolved single images show the development of the instability from small perturbations through the formation of the first drop. The system forms an accurate automated method of measuring the development of liquid jet instabilities. It can readily be applied to practical problems including liquid jet atomization.List of symbols a undisturbed jet radius - k nondimensional wavenumber (= 2a/) - Q gas-to-liquid density ratio - r 0 mean jet radius, from initial region of image - R Reynolds number (= 2Ua/) - U mean jet velocity - We Weber number - z streamwise coordinate, origin at jet orifice - temporal growth rate - s measured spatial growth rate - nondimensional temporal growth rate - r absolute value of height of peaks or troughs relative to r 0 - r 1 height of first extremum in a particular record - instability wavelength - liquid viscosity - liquid density - surface tension of liquid-gas interface  相似文献   

4.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

5.
Summary Thermal free convection from a sphere has been studied by melting solid benzene spheres in excess liquid benzene (Pr=8,3; 108<Gr<109). Overall heat transfer as well as local heat transfer were investigated. For the effect of cold liquid produced by the melting a correction has been applied. Results are compared with those obtained by other workers who used alternative experimental methods.Nomenclature coefficient of heat transfer - d characteristic length, here diameter of sphere - thermal conductivity - g acceleration of free fall - cubic expansion coefficient - T temperature difference between wall and fluid at infinity - kinematic viscosity - density - c specific heat capacity - a thermal diffusivity (=/c) - D diffusion coefficient - Nu dimensionless Nusselt number (=d/) - Nu* the analogous number for mass transfer (=kd/D) - mean value of Nusselt number - Gr dimensionless Grashof number (=gd 3T/ 2) - Gr* the analogous number for mass transfer (=gd 3x/ 2) - Pr dimensionless Prandtl number (=/a) - Sc dimensionless Schmidt number (=/D)  相似文献   

6.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

7.
Summary This paper is devoted to a study of the flow of a second-order fluid (flowing with a small mass rate of symmetrical radial outflow m, taken negative for a net radial inflow) over a finite rotating disc enclosed within a coaxial cylinderical casing. The effects of the second-order terms are observed to depend upon two dimensionless parameters 1 and 2. Maximum values 1 and 2 of the dimensionless radial distances at which there is no recirculation, for the cases of net radial outflow (m>0) and net radial inflow (m<0) respectively, decrease with an increase in the second-order effects [represented by T(=1+2)]. The velocities at 1 and 2 as well as at some other fixed radii have been calculated for different T and the associated phenomena of no-recirculation/recirculation discussed. The change in flow phenomena due to a reversal of the direction of net radial flow has also been studied. The moment on the rotating disc increases with T.Nomenclature , , z coordinates in a cylindrical polar system - z 0 distance between rotor and stator (gap length) - =/z 0, dimensionless radial distance - =z/z 0, dimensionless axial distance - s = s/z0, dimensionless disc radius - V =(u, v, w), velocity vector - dimensionless velocity components - uniform angular velocity of the rotor - , p fluid density and pressure - P =p/(2 z 02 2 , dimensionless pressure - 1, 2, 3 kinematic coefficients of Newtonian viscosity, elastico-viscosity and cross-viscosity respectively - 1, 2 2/z 0 2 , resp. 3/z 0 2 , dimensionless parameters representing the ratio of second-order and inertial effects - m = , mass rate of symmetrical radial outflow - l a number associated with induced circulatory flow - Rm =m/(z 01), Reynolds number of radial outflow - R l =l/(z 01), Reynolds number of induced circulatory flow - Rz =z 0 2 /1, Reynolds number based on the gap - 1, 2 maximum radii at which there is no recirculation for the cases Rm>0 and Rm<0 respectively - 1(T), 2(T) 1 and 2 for different T - U 1(T) (+) = dimensionless radial velocity, Rm>0 - V 1(T) (+) = , dimensionless transverse velocity, Rm>0 - U 2(T) (–) = , dimensionless radial velocity, Rm=–Rn<0, m=–n - V 2(T) (–) = , dimensionless transverse velocity, Rm<0 - C m moment coefficient  相似文献   

8.
A nonequilibrium theory of a slurry is developed and its practical use is illustrated by a simple stability analysis. Here a slurry is defined as a deformable continuum consisting of a liquid phase containing in suspension a large number of small solid particles which have formed by solidification from the liquid. The liquid is assumed to consist of two components and the solid to contain only one of the two. Consequently, the process of change of phase requires redistribution of material on the scale of the solid particles. This process is assumed to take a finite amount of time, requiring a nonequilibrium macroscopic theory. This theory contains four thermodynamic variables, three to represent the equilibrium state of the binary system and a fourth measuring the departure from thermodynamic equilibrium. The process of microscale diffusion of material is parameterized in the macroscale theory, leading to a Landau-type relaxation term in the equation of evolution of the fourth variable. The theory is simplified to yield a Boussinesq-like set of governing equations. Their practical use is illustrated by analyzing the stability of a simple steady solution of the equations and the effects of a non-zero relaxation time are discussed. A novel instability mechanism involving sedimentation of particles, previously found to occur in the equilibrium case, is found to persist in nonequilibrium, but disappears in the limit of no change of phase.Key to symbols a, b, c thermodynamic coefficients; see (3.36)–(3.38) - sedimentation coefficient; see (5.18) - C p specific heat; see (3.24) - C p de specific heat of the slurry; see (3.28) and (3.30) - c radius of solid particle (in §4) - D, D diffusive coefficients; see (3.40) and (3.41) - material diffusivity in liquid phase - D * modified diffusion coefficient; see (5.15) - d thermodynamic coefficient; see (3.39) - E specific internal energy - f, g, h thermodynamic coefficients; see (3.36)–(3.38) - g acceleration of gravity - reduced gravity; see (5.10) - i total diffusive flux vector of constituent 1 - i diffusive flux vector of constituent 1 in the liquid phase - j diffusive flux vector of solid phase - k thermal conductivity - k entropy flux vector - k T, kT thermodiffusion coefficients; see (3.40) and (3.41) - L latent heat of solidification per unit mass; see (3.7) and (3.24) - m wave number - m s rate of creation of mass of solid per unit volume through solidification - m 1 s rate of creation of mass of solid constituent 1 per unit volume through solidification - mass rate of freezing per unit area per unit time - N number of solid particles per unit volume - p pressure - p H hydrostatic component of pressure - p m mechanical pressure - p 1 dynamic component of pressure - q heat flux vector - Q D rate of regeneration of heat through diffusive fluxes - Q M rate of regeneration of heat through phase-change processes - Q v rate of regeneration of heat through viscosity - Q vector defined by (3.16) - r heat externally supplied per unit mass (in §3); spherical radial coordinate (in §4) - S specific entropy of slurry - change of specific entropy with mass fraction of constituent 1; also change of chemical potential of liquid phase with temperature barring change of phase - change of chemical potential of liquid phase with temperature in phase equilibrium; see (3.28) and (3.30) - T temperature - t time - t 0 relaxation time; see (5.30) - u barycentric velocity - u H horizontal perturbation velocity - V sedimentation speed - w a upward speed of simple state; see (6.5) and (6.12) - z upward vertical coordinate - upward unit vector - thermal expansion coefficient barring change of phase; see (3.23) - > * thermal expansion coefficient in phase equilibrium; see (3.27) and (3.30) - modified thermal expansion coefficient; see (5.1) and (5.4) - isothermal compressibility of slurry barring change of phase; see (3.23) - * isothermal compressibility of slurry in phase equilibrium; see (3.27) and (3.30) - dimensionless measure of departure from liquidus equilibrium; see (5.2) - a deviation from phase equilibrium in simple state; see (6.6) and (6.13) - vertical wave number - volume expansion per unit mass upon melting; see (3.6) - change of chemical potential of liquid phase with pressure; see (3.25) - change of chemical potential of liquid phase with pressure for slurry; see (3.29) and (3.30) - compositional gradient in the static state; see (6.15) - vector defined by (3.35) - constant of integration; see (6.7) and (6.8) - coefficient defined by (6.23) - nonequilibrium expansion coefficient; see (5.1) and (5.4) - thermal diffusivity; =k/C p - modified thermal diffusivity; see (5.33) - relaxation rate to phase equilibrium; see (2.2) - 1 relaxation rate to solid-composition equilibrium; see (2.3) - sedimentation coefficient; see (4.29) - horizontal wave number vector - sedimentation coefficient; see (4.30) - L , s chemical potential of constituent 1 relative to constituent 2 in liquid and solid phase per unit mass; see (2.6) - change of chemical potential of liquid with liquid composition; see (3.8) - coefficient defined by (3.10) - kinematic shear viscosity - total mass fraction of constituent 1 (i.e., solute) - L, s mass fraction of constituent 1 in liquid and solid phases - density of slurry - s density of solid phase - - - , growth rate of disturbance - stress tensor - deviatoric stress tensor - dimensionless temperature; see (5,3) - a constant of integration; see (6.7) - mass fraction of solid phase in slurry - b vertical gradient of mass fraction of solid; see (6.1) - dimensionless measure of b; see (6.22) - c temporal gradient of mass fraction of solid; see (6.1) - specific Gibbs free energy; see (3.13) - L,s specific Gibbs free energy of liquid and solid phases; see (2.12) - measure of departure from liquidus equilibrium; see (2.14) - measure of departure from solidus equilibrium; see (2.5) - spherical polar coordinate (in §4); see (4.20); wave angle (in §6); see (6.38)  相似文献   

9.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

10.
The similarity solution of the radial turbulent jet with weak swirl is discussed and a new solution of the radial turbulent jet with swirl is proposed without restrictions assumed in the weak swirl solution.Nomenclature e swirl parameter - k experimental constant - l non-negative constant - M, M , N, P integral invariants - q velocity component in -direction - q max maximum velocity component in -direction - u radial velocity component - u max maximum radial velocity component - v axial velocity component - w peripheral velocity component - w max maximum peripheral velocity component - x radial coordinate - y transverse coordinate - angle introduced in (28) - characteristic width of a jet - (x, y) similarity variable (scaled x and y coordinate) - molecular kinematic viscosity - T eddy kinematic viscosity - tangential coordinate - fluid density - turbulent shear stress in -direction - xy , y components of turbulent shear stress tensor - (x, y) stream function  相似文献   

11.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

12.
13.
We report non-equilibrium molecular dynamics simulations of rigid and non-rigid dumbbell fluids to determine the contribution of internal degrees of freedom to strain-rate-dependent shear viscosity. The model adopted for non-rigid molecules is a modification of the finitely extensible nonlinear elastic (FENE) dumbbell commonly used in kinetic theories of polymer solutions. We consider model polymer melts — that is, fluids composed of rigid dumbbells and of FENE dumbbells. We report the steady-state stress tensor and the transient stress response to an applied Couerte strain field for several strain rates. We find that the rheological properties of the rigid and FENE dumbbells are qualitatively and quantitatively similar. (The only exception to this is the zero strain rate shear viscosity.) Except at high strain rates, the average conformation of the FENE dumbbells in a Couette strain field is found to be very similar to that of FENE dumbbells in the absence of strain. The theological properties of the two dumbbell fluids are compared to those of a corresponding fluid of spheres which is shown to be the most non-Newtonian of the three fluids considered.Symbol Definition b dimensionless time constant relating vibration to other forms of motion - F force on center of mass of dumbbell - F i force on bead i of dumbbell - F force between center of masses of dumbbells and - F ij force between beads i and j - h vector connecting bead to center of mass of dumbbell - H dimensionless spring constant for dumbbells, in units of / 2 - I moment of inertia of dumbbell - J general current induced by applied field - k B Boltzmann's constant - L angular momentum - m mass of bead, (= m/2) - M mass of dumbbell, g - N number of dumbbells in simulation cell - P translational momentum of center of mass of dumbbell - P pressure tensor - P xy xy component of pressure tensor - Q separation of beads in dumbbell - Q eq equilibrium extension of FENE dumbbell and fixed extension of rigid dumbbell - Q 0 maximum extension of dumbbell - r ij vector connecting beads i and j - r position vector of center of mass dumbbell - R vector connecting centers of mass of two dumbbells - t time - t * dimensionless time, in units of m/ - T * dimensionless temperature, in units of /k - u potential energy - u velocity vector of flow field - u x x component of velocity vector - V volume of simulation cell - X general applied field - strain rate, s–1 - * dimensionless shear rate, in units of /m 2 - general transport property - Lennard-Jones potential well depth - friction factor for Gaussian thermostat - shear viscosity, g/cms - * dimensionless shear viscosity, in units of m/ 2 - * dimensionless number density, in units of –3 - Lennard-Jones separation of minimum energy - relaxation time of a fluid - angular velocity of dumbbell - orientation angle of dumbbell   相似文献   

14.
Control of low-speed turbulent separated flow using jet vortex generators   总被引:3,自引:0,他引:3  
A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).Nomenclature C p pressure coefficient, 2(P-P)/V 2 - C Q total flow coefficient, Q/ v - D 0 jet orifice diameter - Q total volumetric flow rate - R Reynolds number based on momentum thickness - u fluctuating velocity component in the free-stream (x) direction - V free-stream flow speed - VR ratio of jet speed to free-stream flow speed - x coordinate along the wall in the free-stream direction - jet inclination angle (angle between the jet axis and the wall) - jet azimuthal angle (angle between the jet axis and the free-stream direction in a horizontal plane) - boundary-layer thickness - momentum thickness - lateral distance between jet orifices A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 Sept. 1990  相似文献   

15.
A numerical solution is obtained for the problem of air flow past a sphere under conditions when nonequilibrium excitation of the vibrational degrees of freedom of the molecular components takes place in the shock layer. The problem is solved using the method of [1]. In calculating the relaxation rates account was taken of two processes: 1) transition of the molecular translational energy into vibrational energy during collision; 2) exchange of vibrational energy between the air components. Expressions for the relaxation rates were computed in [2]. The solution indicates that in the state far from equilibrium a relaxation layer is formed near the sphere surface. A comparison is made of the calculated values of the shock standoff with the experimental data of [3].Notation uVmax, vVmax velocity components normal and tangential to the sphere surface - Vmax maximal velocity - P V max 2 pressure - density - TT temperature - eviRT vibrational energy of the i-th component per mole (i=–O2, N2) - =rb–1 shock wave shape - a f the frozen speed of sound - HRT/m gas total enthalpy  相似文献   

16.
This paper reports the investigation of mean and turbulent flow characteristics of a two-dimensional plane diffuser. Both experimental and theoretical details are considered. The experimental investigation consists of the measurement of mean velocity profiles, wall static pressure and turbulence stresses. Theoretical study involves the prediction of downstream velocity profiles and the distribution of turbulence kinetic energy using a well tested finite difference procedure. Two models, viz., Prandtl's mixing length hypothesis and k- model of turbulence, have been used and compared. The nondimensional static pressure distribution, the longitudinal pressure gradient, the pressure recovery coefficient, percentage recovery of static pressure, the variation of U max/U bar along the length of the diffuser and the blockage factor have been valuated from the predicted results and compared with the experimental data. Further, the predicted and the measured value of kinetic energy of turbulence have also been compared. It is seen that for the prediction of mean flow characteristics and to evaluate the performance of the diffuser, a simple turbulence model like Prandtl's mixing length hypothesis is quite adequate.List of symbols C 1 , C 2 ,C turbulence model constants - F x body force - k kinetic energy of turbulence - l m mixing length - L length of the diffuser - u, v, w rms value of the fluctuating velocity - u, v, w turbulent component of the velocity - mean velocity in the x direction - A average velocity at inlet - U bar average velocity in any cross section - U max maximum velocity in any cross section - V mean velocity in the y direction - W local width of the diffuser at any cross section - x, y coordinates - dissipation rate of turbulence - m eddy diffusivity - Von Karman constant - mixing length constant - l laminar viscosity - eff effective viscosity - v kinematic viscosity - density - k effective Schmidt number for k - effective Schmidt number for - stream function - non dimensional stream function  相似文献   

17.
18.
An experimental study of gas-liquid slug flow   总被引:6,自引:0,他引:6  
Experimental measurements were carried out for upward gas-liquid slug flow in a 50.8 mm diameter pipe. Parallel conductance wires were used to distinguish the Taylor bubbles and liquid slugs and to determine translation velocities and lengths, an electrochemical probe provided the magnitude and direction of the wall shear stress and a radio-frequency local probe was used for the axial and radial distribution of voidage in the liquid slugs. Data are reported over wide range of flow conditions covering slug flow and into the churn flow pattern. Comparison with the Fernandes model predictions are presented. Numerical simulation of slug flow provided information on the structure of flow in a liquid slug and, in particular, on the process of mixing behind a Taylor bubble.List of symbols D pipe diameter - f Taylor bubble frequency - F Gi (x) gas existence function for i-th liquid slug - g gravitational acceleration - l A distance for the wall shear stress reversal in a liquid slug - l B distance for the wall shear stress reversal in a Taylor bubble region - l LS length of a liquid slug - l TB length of a Taylor bubble - n number of samples in an ensemble - u axial velocity - U M superficial mixture velocity (U SG + USL) - U N translation velocity of the leading Taylor bubble - U NLS average translation velocity of liquid slugs - U NTB average translation velocity of Taylor bubbles - U OT overtaking velocity of the trailing Taylor bubble - U SG superficial gas velocity - U SL superficial liquid velocity - v radial velocity - w (y) velocity profile at the inlet to a liquid slug - x axial coordinate - y radial coordinate - void fraction - LS void fraction in a liquid slug - =l TB /(lTB + lLS) - density - surface tension - shear stress - saturation ratio, = w / g h - ensemble average  相似文献   

19.
Transient propagation of weak pressure perturbations in a homogeneous, isotropic, fluid saturated aquifer has been studied. A damped wave equation for the pressure in the aquifer is derived using the macroscopic, volume averaged, mass conservation and momentum equations. The equation is applied to the case of a well in a closed aquifer and analytical solutions are obtained to two different flow cases. It is shown that the radius of influence propagates with a finite velocity. The results show that the effect of fluid inertia could be of importance where transient flow in porous media is studied.List of symbols b Thickness of the aquifer, m - c 0 Wave velocity, m/s - k Permeability of the porous medium, m2 - n Porosity of the porous medium - p( ,t) Pressure, N/m2 - Q Volume flux, m3/s - r Radial coordinate, m - r w Radius of the well, m - s Transform variable - S Storativity of the aquifer - S d(r, t) Drawdown, m - t Time, s - T Transmissivity of the aquifer, m2/s - ( ,t) Velocity of the fluid, m/s - Coordinate vector, m - z Vertical coordinate, m - Coefficient of compressibility, m2/N - Coefficient of fluid compressibility, m2/N - Relaxation time, s - (r, t) Hydraulic potential, m - Dynamic viscosity of the fluid, Ns/m2 - Dimensionless radius - Density of the fluid, Ns2/m4 - (, ) Dimensionless drawdown - Dimensionless time - , x Dummy variables - 0, 1 Auxilary functions  相似文献   

20.
Streamwise pseudo-vortical motions near the wall in a fully-developed two-dimensional turbulent channel flow are clearly visualized in the plane perpendicular to the flow direction by a sophisticated hydrogen-bubble technique. This technique utilizes partially insulated fine wires, which generate hydrogen-bubble clusters at several distances from the wall. These flow visualizations also supply quantitative data on two instantaneous velocity components, and w, as well as the streamwise vorticity, x . The vorticity field thus obtained shows quasi-periodicity in the spanwise direction and also a double-layer structure near the wall, both of which are qualitatively in good agreement with a pseudo-vortical motion model of the viscous wall-region.List of symbols C i ,c i ,d i constants in Eqs. (2), (3) and (4) - H channel width (m) - Re H Reynolds number (= U c H/) - Re Reynolds number (= U c /) - T period (s) - t time (s) - U mean streamwise velocity (m/s) - U c center-line velocity (m/s) - u friction velocity (m/s) - u, , w velocity fluctuations (m/s) - x, y, z coordinates (m) - * displacement thickness (m) - momentum thickness (m) - mean low-speed streak spacing (m) - kinematic viscosity (m2/s) - phase difference - x streamwise vorticity fluctuation (1/s) - ( )+ normalized by u and - () root mean square value - () statistical average This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号