首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

2.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

3.
Summary Thermal free convection from a sphere has been studied by melting solid benzene spheres in excess liquid benzene (Pr=8,3; 108<Gr<109). Overall heat transfer as well as local heat transfer were investigated. For the effect of cold liquid produced by the melting a correction has been applied. Results are compared with those obtained by other workers who used alternative experimental methods.Nomenclature coefficient of heat transfer - d characteristic length, here diameter of sphere - thermal conductivity - g acceleration of free fall - cubic expansion coefficient - T temperature difference between wall and fluid at infinity - kinematic viscosity - density - c specific heat capacity - a thermal diffusivity (=/c) - D diffusion coefficient - Nu dimensionless Nusselt number (=d/) - Nu* the analogous number for mass transfer (=kd/D) - mean value of Nusselt number - Gr dimensionless Grashof number (=gd 3T/ 2) - Gr* the analogous number for mass transfer (=gd 3x/ 2) - Pr dimensionless Prandtl number (=/a) - Sc dimensionless Schmidt number (=/D)  相似文献   

4.
Summary A probabilistic model of the geometric imperfections of a real structure is proposed, in order to provide a general theory of the stochastic response of structures in presence of small random deviations from the perfect scheme. The main statistical measures of the stochastic response are derived and an application to the study of a particular conservative elastic system is developed.
Sommario Si propone una teoria generale della risposta probabilistica di strutture, in presenza di piccole deviazioni aleatorie dei dati iniziali rispetto allo schema geometrico perfetto. Si deducono le principali proprietà statistiche della risposta della struttura a sollecitazioni esterne deterministiche, e si sviluppa una applicazione riguardante il comportamento aleatorio di un particolare sistema elastico conservativo.

List of symbols element of the sample space of events - kn random variables modelling the structural imperfections - P(o) probability density of random variables - random imperfection of the unloaded structure - u additional displacement of the loaded structure - uo deterministic fundamental solution for the perfect structure - difference between the additional displacement of the loaded structure and the deterministic fundamental solution for the perfect structure - V1=u1 buckling mode of the perfect structure - i intrinsic coordinates of the structure - suitable measure of the magnitude of the random imperfections - scalar geometric variable representing the internal product - random imperfection divided by - single scalar variable denoting the magnitude of the prescribed loads - potential energy of the structure - potential energy of the perfect structure - difference between and - c lowest critical load - s real local maximum for the magnitude of the prescribed loads - c divided by S - E{} expected value of a random variable - 2 variance of a random variable - , random variables defined by Eq. (21)  相似文献   

5.
In dynamic rheological experiments melt behavior is usually expressed in terms of complex viscosity * () or complex modulusG * (). In contrast, we attempted to use the complex fluidity * () = 1/µ * () to represent this behavior. The main interest is to simplify the complex-plane diagram and to simplify the determination of fundamental parameters such as the Newtonian viscosity or the parameter of relaxation-time distribution when a Cole-Cole type distribution can be applied. * () complex shear viscosity - () real part of the complex viscosity - () imaginary part of the complex viscosity - G * () complex shear modulus - G() storage modulus in shear - G() loss modulus in shear - J * () complex shear compliance - J() storage compliance in shear - J() loss compliance in shear - shear strain - rate of strain - angular frequency (rad/s) - shear stress - loss angle - * () complex shear fluidity - () real part of the complex fluidity - () imaginary part of the complex fluidity - 0 zero-viscosity - 0 average relaxation time - h parameter of relaxation-time distribution  相似文献   

6.
Since the temperature is not an additive function, the traditional thermodynamic point of view suggests that the volume integral of the temperature has no precise physical meaning. This observation conflicts with the customary analysis of non-isothermal catalytic reactors, heat pipes, driers, geothermal processes, etc., in which the volume averaged temperature plays a crucial role. In this paper we identify the thermodynamic significance of the volume averaged temperature in terms of a simple two-phase heat transfer process. Given the internal energy as a function of the point temperature and the density
we show that the volume averaged internal energy is represented by e = F(T , )when e is a linear function of T and , or when the traditional length-scale constraints associated with the method of volume averaging are satisfied. When these conditions are not met, higher order terms involving the temperature gradient and the density gradient appear in the representation for e .  相似文献   

7.
A linearized theory is developed for the derivation of an asymptotic solution of the initial value problem of axisymmetric surface waves in an infinitely deep fluid produced by an arbitrary oscillating pressure distribution. An asymptotic treatment of the problem is presented in detail to obtain the solution for the surface elevation for sufficiently large time. Finally, the main prediction of this analysis for some particular pressure distributions of physical interest is exhibited.Nomenclature R, , Y cylindrical polar coordinates - frequency - g acceleration due to gravity - density of fluid - T time - (R, Y; T) velocity potential - E(R, T) vertical surface elevation - P(R, T) applied surface pressure - r, y nondimensional cylindrical polar coordinates, - p(r, t) nondimensional surface pressure - t nondimensional time, T - (r, y; t) nondimensional velocity potential, - (r, t) nondimensional vertical surface elevation, - (k) Hankel transform of a function p(r) with respect to r - I 1 transient wave integral - I 2 steady state wave integral  相似文献   

8.
Measurements have been made in nearly-isotropic grid turbulence on which is superimposed a linearly-varying transverse temperature distribution. The mean-square temperature fluctuations, , increase indefinitely with streamwise distance, in accordance with theoretical predictions, and consistent with an excess of production over dissipation some 50% greater than values recorded in previous experiments. This high level of production has the effect of reducing the ratio,r, of the time scales of the fluctuating velocity and temperature fields. The results have been used to estimate the coefficient,C, in Monin's return-to-isotropy model for the slow part of the pressure terms in the temperature-flux equations. An empirical expression by Shih and Lumley is consistent with the results of earlier experiments in whichr 1.5, C 3.0, but not with the present data where r 0.5, C 1.6. Monin's model is improved when it incorporates both time scales.List of symbols C coefficient in Monin model, Eq. (5) - M grid mesh length - m exponent in power law for temperature variance, x m - n turbulence-energy decay exponent,q 2 x -n - p production rate of - p pressure - q 2 - R microscale Reynolds number - r time-scale ratiot/t - T mean temperature - U mean velocity - mean-square velocity fluctuations (turbulent energy components) - turbulent temperature flux - x, y, z spatial coordinates - temperature gradient dT/dy - thermal diffusivity - dissipation rate ofq 2/2 - dissipation rate of - Taylor microscale (2=5q2/) - temperature microscale - v temperature-flux correlation coefficient, /v - dimensionless distance from the grid,x/M  相似文献   

9.
Certain steady yawed magnetogasdynamic flows, in which the magnetic field is everywhere parallel to the velocity field, are related to certain reduced three-dimensional compressible gas flows having zero magnetic field. Under a restriction, the reduced flows are linked, by certain reciprocal relations, to a four parameter class of plane gas flows. In the instance of constant entropy an approximation method is suggested for obtaining magnetogasdynamic flows from the corresponding plane, irrotational gasdynamic flows and examples are given.

Nomenclature

magnetogasdynamic flow variables H magnetic intensity - q fluid velocity - fluid density - p pressure - s entropy - Q t, H t component of q, H in the x–y plane - w , h component of q, H perpendicular to the x–y plane reduced gasdynamic flow factor of proportionality - q* fluid velocity - * fluid density - p* pressure - Q t * =u*î+v*, w* components of q* - l arbitrary constant - A v Alfvén speed - Q t, , p fluid velocity, density, pressure of the reciprocal gas dynamic flow - L, n, k, arbitrary constants - , velocity potential, stream function - angle made by Q t, Q t * , and V with the x-axis - adiabatic gas constant - a 2=(–1)/2 constant - M Mach number - W constant value of w* - E approximate constant value of g(p) - * modified potential function - modified velocity coordinate - +i - complex potential of the irrotational flow - B arbitrary constant - V incompressible flow velocity - V modified fluid velocity - X p, Y p points on the profile  相似文献   

10.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

11.
Summary This paper is devoted to a study of the flow of a second-order fluid (flowing with a small mass rate of symmetrical radial outflow m, taken negative for a net radial inflow) over a finite rotating disc enclosed within a coaxial cylinderical casing. The effects of the second-order terms are observed to depend upon two dimensionless parameters 1 and 2. Maximum values 1 and 2 of the dimensionless radial distances at which there is no recirculation, for the cases of net radial outflow (m>0) and net radial inflow (m<0) respectively, decrease with an increase in the second-order effects [represented by T(=1+2)]. The velocities at 1 and 2 as well as at some other fixed radii have been calculated for different T and the associated phenomena of no-recirculation/recirculation discussed. The change in flow phenomena due to a reversal of the direction of net radial flow has also been studied. The moment on the rotating disc increases with T.Nomenclature , , z coordinates in a cylindrical polar system - z 0 distance between rotor and stator (gap length) - =/z 0, dimensionless radial distance - =z/z 0, dimensionless axial distance - s = s/z0, dimensionless disc radius - V =(u, v, w), velocity vector - dimensionless velocity components - uniform angular velocity of the rotor - , p fluid density and pressure - P =p/(2 z 02 2 , dimensionless pressure - 1, 2, 3 kinematic coefficients of Newtonian viscosity, elastico-viscosity and cross-viscosity respectively - 1, 2 2/z 0 2 , resp. 3/z 0 2 , dimensionless parameters representing the ratio of second-order and inertial effects - m = , mass rate of symmetrical radial outflow - l a number associated with induced circulatory flow - Rm =m/(z 01), Reynolds number of radial outflow - R l =l/(z 01), Reynolds number of induced circulatory flow - Rz =z 0 2 /1, Reynolds number based on the gap - 1, 2 maximum radii at which there is no recirculation for the cases Rm>0 and Rm<0 respectively - 1(T), 2(T) 1 and 2 for different T - U 1(T) (+) = dimensionless radial velocity, Rm>0 - V 1(T) (+) = , dimensionless transverse velocity, Rm>0 - U 2(T) (–) = , dimensionless radial velocity, Rm=–Rn<0, m=–n - V 2(T) (–) = , dimensionless transverse velocity, Rm<0 - C m moment coefficient  相似文献   

12.
The coupled problem whereby a solid heat generating cylinder is being cooled in steady state by a coolant in potential flow is investigated. An analytical technique for determining the temperature distributions in the solid and the fluid is presented. Numerical studies for six Péclet numbers (0.9<Pe<11.3) and three thermal conductivity ratios (0.31<K<3.1) were carried out.The surface hot-spot temperature and center temperature are presented graphically as functions of the Péclet number with the thermal conductivity ratio as a parameter. The average Nusselt number is found to be proportional to the Péclet number to approximately the one-half power. For the special case of constant surface temperature (uncoupled problem), the variation of local Nusselt number with angle measured from the forward stagnation point is in excellent agreement with the result presented by Grosh and Cess [6].Nomenclature ce m(, –q) Mathieu function, periodic - D n Fourier coefficient for solid temperature distribution - E n Fourier coefficient for fluid temperature distribution - E() a term defined by equation (12), degree - F() a term defined by equation (13), degree - Fek m(z, –q) modified Mathieu function, non-periodic - Fek m(z, –q) derivative of Fek m(z, –q) - h local heat transfer coefficient, energy/time area degree - average heat transfer coefficient, energy/time area degree - h m mean heat-transfer coefficient, energy/time area degree - k f thermal conductivity of fluid, energy/time length degree - K thermal conductivity ratio, k f/k s - k s thermal conductivity of solid, energy/time length degree - Nu local Nusselt number, 2Rh/k f - average Nusselt number defined by equation (55) - (Nu)m mean Nusselt number defined by equation (57) - Pe Péclet number, 2RU/ f - Q rate of heat generation per unit volume, energy/time volume - q parameter of Mathieu function, (Pe/4)2 - q normal heat flux, energy/time area - R cylinder radius, length - Re Reynolds number, 2R/ - r radial position variable, length - T temperature, degree - T 0 constant surface temperature, degree - T temperature of fluid at infinity, degree - T e temperature at center of cylinder, degree - T f temperature of fluid, degree - T s temperature of solid, degree - T w surface temperature, degree - surface hot-spot temperature, degree - reduced temperature, (T–)/E(1) - U approach velocity of flowing fluid, length/time - v velocity component in the direction, length/time - v r velocity component in the r direction, length/time - z logarithm of Greek symbols f thermal diffusivity of the fluid, (length)2/time - reduced radius, r/R - angular position variable measured from the trailing stagnation point, radians - kinematic viscosity, (length)2/time - angular position variable measured from the forward stagnation point, degree  相似文献   

13.
We report non-equilibrium molecular dynamics simulations of rigid and non-rigid dumbbell fluids to determine the contribution of internal degrees of freedom to strain-rate-dependent shear viscosity. The model adopted for non-rigid molecules is a modification of the finitely extensible nonlinear elastic (FENE) dumbbell commonly used in kinetic theories of polymer solutions. We consider model polymer melts — that is, fluids composed of rigid dumbbells and of FENE dumbbells. We report the steady-state stress tensor and the transient stress response to an applied Couerte strain field for several strain rates. We find that the rheological properties of the rigid and FENE dumbbells are qualitatively and quantitatively similar. (The only exception to this is the zero strain rate shear viscosity.) Except at high strain rates, the average conformation of the FENE dumbbells in a Couette strain field is found to be very similar to that of FENE dumbbells in the absence of strain. The theological properties of the two dumbbell fluids are compared to those of a corresponding fluid of spheres which is shown to be the most non-Newtonian of the three fluids considered.Symbol Definition b dimensionless time constant relating vibration to other forms of motion - F force on center of mass of dumbbell - F i force on bead i of dumbbell - F force between center of masses of dumbbells and - F ij force between beads i and j - h vector connecting bead to center of mass of dumbbell - H dimensionless spring constant for dumbbells, in units of / 2 - I moment of inertia of dumbbell - J general current induced by applied field - k B Boltzmann's constant - L angular momentum - m mass of bead, (= m/2) - M mass of dumbbell, g - N number of dumbbells in simulation cell - P translational momentum of center of mass of dumbbell - P pressure tensor - P xy xy component of pressure tensor - Q separation of beads in dumbbell - Q eq equilibrium extension of FENE dumbbell and fixed extension of rigid dumbbell - Q 0 maximum extension of dumbbell - r ij vector connecting beads i and j - r position vector of center of mass dumbbell - R vector connecting centers of mass of two dumbbells - t time - t * dimensionless time, in units of m/ - T * dimensionless temperature, in units of /k - u potential energy - u velocity vector of flow field - u x x component of velocity vector - V volume of simulation cell - X general applied field - strain rate, s–1 - * dimensionless shear rate, in units of /m 2 - general transport property - Lennard-Jones potential well depth - friction factor for Gaussian thermostat - shear viscosity, g/cms - * dimensionless shear viscosity, in units of m/ 2 - * dimensionless number density, in units of –3 - Lennard-Jones separation of minimum energy - relaxation time of a fluid - angular velocity of dumbbell - orientation angle of dumbbell   相似文献   

14.
A nonequilibrium theory of a slurry is developed and its practical use is illustrated by a simple stability analysis. Here a slurry is defined as a deformable continuum consisting of a liquid phase containing in suspension a large number of small solid particles which have formed by solidification from the liquid. The liquid is assumed to consist of two components and the solid to contain only one of the two. Consequently, the process of change of phase requires redistribution of material on the scale of the solid particles. This process is assumed to take a finite amount of time, requiring a nonequilibrium macroscopic theory. This theory contains four thermodynamic variables, three to represent the equilibrium state of the binary system and a fourth measuring the departure from thermodynamic equilibrium. The process of microscale diffusion of material is parameterized in the macroscale theory, leading to a Landau-type relaxation term in the equation of evolution of the fourth variable. The theory is simplified to yield a Boussinesq-like set of governing equations. Their practical use is illustrated by analyzing the stability of a simple steady solution of the equations and the effects of a non-zero relaxation time are discussed. A novel instability mechanism involving sedimentation of particles, previously found to occur in the equilibrium case, is found to persist in nonequilibrium, but disappears in the limit of no change of phase.Key to symbols a, b, c thermodynamic coefficients; see (3.36)–(3.38) - sedimentation coefficient; see (5.18) - C p specific heat; see (3.24) - C p de specific heat of the slurry; see (3.28) and (3.30) - c radius of solid particle (in §4) - D, D diffusive coefficients; see (3.40) and (3.41) - material diffusivity in liquid phase - D * modified diffusion coefficient; see (5.15) - d thermodynamic coefficient; see (3.39) - E specific internal energy - f, g, h thermodynamic coefficients; see (3.36)–(3.38) - g acceleration of gravity - reduced gravity; see (5.10) - i total diffusive flux vector of constituent 1 - i diffusive flux vector of constituent 1 in the liquid phase - j diffusive flux vector of solid phase - k thermal conductivity - k entropy flux vector - k T, kT thermodiffusion coefficients; see (3.40) and (3.41) - L latent heat of solidification per unit mass; see (3.7) and (3.24) - m wave number - m s rate of creation of mass of solid per unit volume through solidification - m 1 s rate of creation of mass of solid constituent 1 per unit volume through solidification - mass rate of freezing per unit area per unit time - N number of solid particles per unit volume - p pressure - p H hydrostatic component of pressure - p m mechanical pressure - p 1 dynamic component of pressure - q heat flux vector - Q D rate of regeneration of heat through diffusive fluxes - Q M rate of regeneration of heat through phase-change processes - Q v rate of regeneration of heat through viscosity - Q vector defined by (3.16) - r heat externally supplied per unit mass (in §3); spherical radial coordinate (in §4) - S specific entropy of slurry - change of specific entropy with mass fraction of constituent 1; also change of chemical potential of liquid phase with temperature barring change of phase - change of chemical potential of liquid phase with temperature in phase equilibrium; see (3.28) and (3.30) - T temperature - t time - t 0 relaxation time; see (5.30) - u barycentric velocity - u H horizontal perturbation velocity - V sedimentation speed - w a upward speed of simple state; see (6.5) and (6.12) - z upward vertical coordinate - upward unit vector - thermal expansion coefficient barring change of phase; see (3.23) - > * thermal expansion coefficient in phase equilibrium; see (3.27) and (3.30) - modified thermal expansion coefficient; see (5.1) and (5.4) - isothermal compressibility of slurry barring change of phase; see (3.23) - * isothermal compressibility of slurry in phase equilibrium; see (3.27) and (3.30) - dimensionless measure of departure from liquidus equilibrium; see (5.2) - a deviation from phase equilibrium in simple state; see (6.6) and (6.13) - vertical wave number - volume expansion per unit mass upon melting; see (3.6) - change of chemical potential of liquid phase with pressure; see (3.25) - change of chemical potential of liquid phase with pressure for slurry; see (3.29) and (3.30) - compositional gradient in the static state; see (6.15) - vector defined by (3.35) - constant of integration; see (6.7) and (6.8) - coefficient defined by (6.23) - nonequilibrium expansion coefficient; see (5.1) and (5.4) - thermal diffusivity; =k/C p - modified thermal diffusivity; see (5.33) - relaxation rate to phase equilibrium; see (2.2) - 1 relaxation rate to solid-composition equilibrium; see (2.3) - sedimentation coefficient; see (4.29) - horizontal wave number vector - sedimentation coefficient; see (4.30) - L , s chemical potential of constituent 1 relative to constituent 2 in liquid and solid phase per unit mass; see (2.6) - change of chemical potential of liquid with liquid composition; see (3.8) - coefficient defined by (3.10) - kinematic shear viscosity - total mass fraction of constituent 1 (i.e., solute) - L, s mass fraction of constituent 1 in liquid and solid phases - density of slurry - s density of solid phase - - - , growth rate of disturbance - stress tensor - deviatoric stress tensor - dimensionless temperature; see (5,3) - a constant of integration; see (6.7) - mass fraction of solid phase in slurry - b vertical gradient of mass fraction of solid; see (6.1) - dimensionless measure of b; see (6.22) - c temporal gradient of mass fraction of solid; see (6.1) - specific Gibbs free energy; see (3.13) - L,s specific Gibbs free energy of liquid and solid phases; see (2.12) - measure of departure from liquidus equilibrium; see (2.14) - measure of departure from solidus equilibrium; see (2.5) - spherical polar coordinate (in §4); see (4.20); wave angle (in §6); see (6.38)  相似文献   

15.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

16.
The power spectrum and the correlation of the laser Doppler velocimeter velocity signal obtained by sampling and holding the velocity at each new Doppler burst are studied. Theory valid for low fluctuation intensity flows shows that the measured spectrum is filtered at the mean sample rate and that it contains a filtered white noise spectrum caused by the steps in the sample and hold signal. In the limit of high data density, the step noise vanishes and the sample and hold signal is statistically unbiased for any turbulence intensity.List of symbols A cross-section of the LDV measurement volume, m2 - A empirical constant - B bandwidth of velocity spectrum, Hz - C concentration of particles that produce valid signals, number/m3 - d m diameter of LDV measurement volume, m - f(1, 2 | u) probability density of t i; and t j given (t) for all t, Hz2 - probability density for t j-ti, Hz - n (t, t) number of valid bursts in (t, t) = N + n - N (t, t) mean number of valid bursts in (t, t) - N e mean number of particles in LDV measurement volume - valid signal arrival rate, Hz - mean valid signal arrival rate, Hz - R uu time delayed autocorrelation of velocity, m2/s2 - S u power spectrum of velocity, m2/s2/Hz - t 1, t 2 times at which velocity is correlated, s - t i, t j arrival times of the bursts that immediately precede t 1 and t 2, respectively, s - t ij t jt i s - T averaging time for spectral estimator, s - T u integral time scale of u (t), s - T Taylor's microscale for u (t), s - u velocity vector = U + u, m/s - u fluctuating component of velocity, m/s - U mean velocity, m/s - u m sampled and held signal, m/s Greek symbols (t) noise signal, m/s - m (t) sampled and held noise signal, m/s - bandwidth of spectral estimator window, radians/s - time between arrivals in pdf, s - Taylor's microscale of length = UT m - kinematic viscosity - 1, 2 arrival times in pdf, s - root mean square of noise signal, m/s - u root mean square of u, m/s - delay time = t 2 - t 1 s - B duration of a Doppler burst, s - circular frequency, radians/s - c low pass frequency of signal spectrum radians/s Other symbols ensemble average - conditional average - ^ estimate  相似文献   

17.
Based on the complex viscosity model various steady-state and transient material functions have been completed. The model is investigated in terms of a corotational frame reference. Also, BKZ-type integral constitutive equations have been studied. Some relations between material functions have been derived. C –1 Finger tensor - F[], (F –1[]) Fourier (inverse) transform - rate of deformation tensor in corotating frame - h(I, II) Wagner's damping function - J (x) Bessel function - m parameter inh (I, II) - m(s) memory function - m k, nk integers (powers in complex viscosity model) - P principal value of the integral - parameter in the complex viscosity model - rate of deformation tensor - shear rates - [], [] incomplete gamma function - (a) gamma function - steady-shear viscosity - * complex viscosity - , real and imaginary parts of * - 0 zero shear viscosity - +, 1 + stress growth functions - , 1 - stress relaxation functions - (s) relaxation modulus - 1(s) primary normal-stress coefficient - ø(a, b; z) degenerate hypergeometric function - 1, 2 time constants (parameters of *) - frequency - extra stress tensor  相似文献   

18.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

19.
Summary The effect of viscous heating in a capillary rheometer is analysed for a power-law fluid by means of a perturbation expansion based upon a boundary-layer-core structure. This expansion is found to complement the eigenfunction series solution obtained by earlier investigators. A similar analysis is presented for the work-of-expansion effect. These two thermal effects are superimposed together with a third perturbation effect due to the pressure dependence of viscosity.On the basis of the present theory, earlier work in this area is discussed and, in some cases, apparent inaccuracies or inconsistencies are pointed out. A means is indicated for correcting data on the basis of the present theory.
Zusammenfassung Es wird der Effekt der Erwärmung einer Potenzflüssigkeit infolge viskoser Reibung in einem Kapillar-Rheometer mittels einer Störungsrechnung untersucht, die auf der Unterteilung der Strömung in eine Grenzschicht und einen Kern basiert. Diese Störungsentwicklung ergänzt eine früher von anderen Autoren gefundene Reihenentwicklung mit Hilfe von Eigenfunktionen. Eine ähnliche Untersuchung wird für die thermische Ausdehnungsarbeit durchgeführt. Diese beiden thermischen Effekte sind zusammen einem dritten Störeffekt superponiert, der von der Druckabhängigkeit der Viskosität herrührt.Aufgrund der vorgelegten Theorie werden verschiedene auf diesem Gebiet früher durchgeführte Arbeiten diskutiert, und es werden in einigen Fällen offensichtliche Ungenauigkeiten und Folgewidrigkeiten aufgedeckt. Schließlich wird eine Methode zur Korrektur von Meßdaten mit Hilfe der vorliegenden Theorie angegeben.

Nomenclature a tube radius - b ; evaluated atT 0 andp = 0 when used in perturbation expansion - C p specific heat - f - f * - h defined by eq. [15] - k thermal conductivity - L tube length - m defined by eq. [8] - m 0 m(T0, 0) - n power-law index - p pressure - Pe C p W a/k Peclet number - Pr C pa/k Prandtl number - Q volumetric flow rate - Q 0 unperturbed value ofQ in specified-p formulation - r radial coordinate - Re W a/ a Reynolds number - T temperature - T 0 inlet temperature - u radial velocity component - u 0 0 unperturbed radial velocity - w axial velocity component - w 0 /W(1 – ) unperturbed axial velocity - W Q/(a 2) average axial velocity - W 0 Q 0/(a 2) - z axial coordinate - (3n + 1)/n - * ; evaluated atT 0 andp = 0 when used in perturbation expansion - 41-n - * - (n + 1)/n - ... shear rate - 4W/a apparent shear rate - p total pressure drop - T a W 2/k characteristic temperature difference - T b total bulk-temperature rise - * T - r/a - shear viscosity - a m0 - (1 –)/ 1/3 - p/z - 0 ... unperturbed value of - z-averaged value of - µ n + 1/n - z/(a Pe) - L L/(a Pe) - mass density - w shear stress at wall - streamfunction - *T0 (absolute temperature scale) - ( )1 leading-order effect due to viscous heating - ( ) 1 * leading-order effect due to work-of-expansion Note: in specified-p formulation,W gets replaced byW 0 in definition of Pe, Re, and. With 7 figures and 7 tables  相似文献   

20.
Incoherent phase transitions are more difficult to treat than their coherent counterparts. The interface, which appears as a single surface in the deformed configuration, is represented in its undeformed state by a separate surface in each phase. This leads to a rich but detailed kinematics, one in which defects such as vacancies and dislocations are generated by the moving interface. In this paper we develop a complete theory of incoherent phase transitions in the presence of deformation and mass transport, with phase interface structured by energy and stress. The final results are a complete set of interface conditions for an evolving incoherent interface.Frequently used symbols Ai,Ci generic subsurface of St - Bi undeformed phase-i region - C configurational bulk stress, Eshelby tensor - F deformation gradient - G inverse deformation gradient - H relative deformation gradient - J bulk Jacobian of the deformation - ¯K, Ki total (twice the mean) curvature of and Si - Lin (U, V) linear transformations from U into V - Lin+ linear transformations of 3 with positive determinant - Orth+ rotations of 3 - Qa external bulk mass supply of species a - ¯S bulk Cauchy stress tensor - S bulk Piola-Kirchhoff stress tensor - Si undeformed phase i interface - Ui relative velocity of Si - Unim+ linear transformations of 3 with unit determinant - ¯V, Vi normal velocity of and Si - intrinsic edge velocity of S and A i S - Wi volume flow across the phase-i interface - X material point - b external body force - e internal bulk configurational force - fi external interfacial force (configurational) - ¯g external interfacial force (deformational) - grad, div spatial gradient and divergence - gradient and divergence on - h relative deformation - ha, diffusive mass flux of species a and list of mass fluxes - ¯m outward unit normal to a spatial control volume - ¯n, ni unit normal to and Si - n subspace of 3 orthogonal to n - ¯qa external interfacial mass supply of species a - s ......... - ¯v, vi compatible velocity fields of and Si - ¯w, wi compatible edge velocity fields for and Ai - x spatial point - yi deformation or motion of phase i - y. material velocity - generic subsurfaces of - , i deformed body and deformed phase-i region - () energy supplied to by mass transport - symmetry group of the lattice - i, surface jacobians - lattice - () power expended on - spatial control volume - S deformed phase interface - lattice point density - interfacial power density - , A total surface stress - C configurational surface stress for phase 1 (material) - ¯Ci configurational surface stress (spatial) - Fi tangential deformation gradient - Gi inverse tangential deformation gradient - H incoherency tensor - ¯1(x), 1i(X) inclusions of ¯n(x) and n i (X) into 3 - K configurational surface stress for phase 2 (material) - ¯L, li curvature tensor of and Si - ¯P(x), Pi(X) projections of 3 onto ¯n(x) and ni (X) - ¯S, S deformational surface stress (spatial and material) - ¯a, a normal part of total surface stress - c normal part of configurational surface stress for phase 1 (material) - ei internal interfacial configurational force - ¯v, vi unit normal to and A i - (x),i(X) projections of 3 onto ¯n(x) and n i (X) - i normal internal force (material) - bulk free energy - slip velocity - i=(–1)i i ......... - a, chemical potential of species a and list of potentials - a, bulk molar density of species a and list of molar densities - i normal internal force (spatial) - surface tension - , i effective shear - referential-to-spatial transform of field - interfacial energy - grand canonical potential - l unit tensor in 3 - x, vector and tensor product in 3 - (...)., t(...) material and spatial time derivative - , Div material gradient and divergence - gradient and divergence on Si - (...), (...) normal time derivative following and Si - (...) limit of a bulk field asx ,xi - [...],...> jump and average of a bulk field across the interface - (...)ext extension of a surface tensor to 3 - tangential part of a vector (tensor) on and Si  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号