首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract

An analytical model is proposed to analyze the vibration and buckling problem of partially cracked thin orthotropic microplate in the presence of thermal environment. The differential governing equation for the cracked plate is derived using the classical plate theory in conjunction with the strain gradient theory of elasticity. The crack is modeled using appropriate crack compliance coefficients based on the simplified line spring model. The influence of thermal environment is incorporated in governing equation in form thermal moments and in-plane compressive forces. The governing equation for cracked plate has been solved analytically to get fundamental frequency and central deflection of plate. To demonstrate the accuracy of the present model, few comparison studies are carried out with the published literature. The stability and dynamic characteristics of the cracked plate are studied considering various parameters such as crack length, plate thickness, change in temperature, and internal length scale of microstructure. It has been concluded that the frequency and deflection are affected by crack length, temperature, and internal length scale of microstructure. Furthermore, to study the buckling behavior of cracked plate, the classical relations for critical buckling load and critical buckling temperature is also proposed considering the effect of crack length, temperature, and internal length scale of microstructure.  相似文献   

2.
This paper presents a study on the postbuckling response of a functionally graded cylindrical shell of finite length embedded in a large outer elastic medium and subjected to internal pressure in thermal environments. The surrounding elastic medium is modeled as a tensionless Pasternak foundation that reacts in compression only. The postbuckling analysis is based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. The thermal effects due to heat conduction are also included and the material properties of functionally graded materials (FGMs) are assumed to be temperature-dependent. The nonlinear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the postbuckling response of the shells and an iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region between the shell and the elastic medium. Numerical solutions are presented in tabular and graphical forms to study the postbuckling behavior of FGM shells surrounded by an elastic medium of tensionless elastic foundation of the Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results reveal that the unilateral constraint has a significant effect on the postbuckling response of shells subjected to internal pressure in thermal environments when the foundation stiffness is sufficiently large.  相似文献   

3.
This paper presents a thorough and comprehensive investigation of non-linear buckling and postbuckling analyses of pin-ended shallow circular arches subjected to a uniform radial load and which have equal elastic rotational end-restraints. The differential equations of equilibrium for non-linear buckling and postbuckling are established based on a virtual work approach. Exact solutions for the non-linear bifurcation, limit point and lowest buckling loads are obtained; in particular, exact solutions for the non-linear postbuckling equilibrium paths are derived. The criteria for switching between fundamental buckling and postbuckling modes are developed in terms of critical values of a geometric parameter for an arch, with exact solutions for these critical values of geometric parameter being obtained. Analytical solutions of non-linear buckling and postbuckling problems for arches with rotational end-restraints are of great interest, since they constitute one of the very few closed-form analyses of buckling and postbuckling behaviour of continuous structural systems. These exact solutions are a contribution to the non-linear structural mechanics of arches, as well as providing useful benchmark solutions for verifying non-linear numerical analyses.  相似文献   

4.
Abstract

Since the two-directional functionally graded (2D-FG) materials can satisfy the new requirements raised based on the elimination of the stress concentration, delamination and cracking problems accompanying with the low cost and lightweight on the structures without sacrificing the stiffness and strength, the structural analyses of these structures become more important than ever. Moreover, the usage of the micro-electromechanical systems composed of 2D-FG materials has been increasing in automotive, military, space, biomedical, and nuclear energy industries. Within this study, the free vibration and buckling behaviors of 2D-FG porous microbeams are investigated based on the modified couple stress theory by employing a transverse shear-normal deformation beam theory and using finite element method. The effects of the thickness to material length scale parameter (MLSP) accompanying with the micro-porosity volume fraction ratio, boundary condition, aspect ratio, and gradient index on the dimensionless fundamental frequencies and dimensionless critical buckling loads of the 2D-FG porous microbeams are investigated. Moreover, with assumption of the variable material length scale parameters (VMLSP), the computed results are compared with ones obtained by employing constant MLSP. It is found that VMLSP increases the stiffness of the 2D-FG porous microbeams and effects the free vibration and buckling responses of these structures.  相似文献   

5.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

6.
The basic equations of a fully nonlinear theory of electromagnetically conducting flat plates carrying an electric current and exposed to a magnetic field of arbitrary orientation are derived. The relevant equations have been obtained by considering that both the elastic and electromagnetic media are homogeneous and isotropic. The geometrical nonlinearities are considered in the von-Kármán sense, and the soft ferromagnetic material of the plate is assumed to feature negligible hysteretic losses. Based on the electromagnetic and elastokinetic field equations, by using the standard averaging methods, the 3-D coupled problem is reduced to an equivalent 2-D one, appropriate to the theory of plates. Having in view that the elastic structures carrying an electric current are prone to buckling, by using the presently developed theory, the associated problems of buckling and postbuckling are investigated. In this context, the problem of the electrical current inducing the buckling instability of the plate, and its influence on the postbuckling behavior are analyzed. In the same context, the problem of the natural frequency–electrical current interaction of flat plates, as influenced by a magnetic field is also addressed.  相似文献   

7.
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL) reinforced piezoelectric micro-plate. The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness. The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP) micro-plate. Governing equations for the nonlocal thermal buckling a...  相似文献   

8.
Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.  相似文献   

9.
Failure of structures and their components is one of major problems in engineering. Studies on mechanical behavior of functionally graded (FG) microplates with defects or cracks by effective numerical methods are rarely reported in literature. In this paper, an effective numerical model is derived based on extended isogeometric analysis (XIGA) for assessment of vibration and buckling of FG microplates with cracks. Based on the modified couple stress theory, the non-classical theory of Reissner–Mindlin plate is extended to capture microstructure, and thus, the size effect. In such theory, possessing C1-continuity is straightforward with the high-order continuity of non-uniform rational B-spline. Due to the use of enrichments in XIGA, crack geometry is independent of the computational mesh. Numerical examples are performed to illustrate the effects of microplate aspect ratio, crack length, internal material length scale parameter, material distribution, and boundary condition on the mechanical responses of cracked FG microplates. The obtained results are compared with reference solutions and that shows that the frequency and buckling loads increases with decreasing the size of FG microplates and crack length. The convergence of the present method is also studied.  相似文献   

10.
This paper describes a novel nondestructive damage detection method that was developed to study the influence of a crack on the dynamic properties of a cantilever beam subjected to bending. Experimental measurements of transfer functions for the cracked cantilever beam revealed a change in the natural frequency with increasing crack length. A finite element model of a cracked element was created to compute the influence of severity and location of damage on the structural stiffness. The proposed model is based on the response of the cracked beam element under a static load. The change in beam deflection as a result of the crack is used to calculate the reduction in the global component stiffness. The reduction of the beam stiffness is then used to determine its dynamic response employing a modal analysis computational model. Euler–Bernoulli and Timoshenko beam theories are used to quantify the elastic stiffness matrix of a finite element. The transfer functions from both theories compare well with the experimental results. The experimental and computational natural frequencies decreased with increasing crack length. Furthermore the Euler–Bernoulli and Timoshenko beam theories resulted in approximately the same decrease in the natural frequency with increasing crack length as experimentally measured.  相似文献   

11.
The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von K′arm′an's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated.The results indicate that the surface stress has an important effect on prebuckling and postbuckling characteristics of nanoshells with small sizes.  相似文献   

12.
A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to axial compression in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and including thermal effects. Two cases of the in-plane boundary conditions are considered. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially loaded, perfect and imperfect, functional graded cylindrical panels with two constituent materials and under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, the character of in-plane boundary conditions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections are studied.  相似文献   

13.
14.
Analytical solutions for bending, buckling, and vibration of micro-sized plates on elastic medium using the modified couple stress theory are presented. The governing equations for bending, buckling and vibration are obtained via Hamilton’s principles in conjunctions with the modified couple stress and Kirchhoff plate theories. The surrounding elastic medium is modeled as the Winkler elastic foundation. Navier’s method is being employed and analytical solutions for the bending, buckling and free vibration problems are obtained. Influences of the elastic medium and the length scale parameter on the bending, buckling, and vibration properties are discussed.  相似文献   

15.
IntroductionCompositelaminatedcylindricalpanelhasbeenusedextensivelyasastructuralconfiguration,mainlyintheaerospaceindustry .Oneoftherecentadvancesinmaterialandstructuralengineeringisinthefieldofsmartstructureswhichincorporatesadaptivematerials.Bytakingadvantageofthedirectandconversepiezoelectriceffects,piezoelectriccompositestructurescancombinethetraditionalperformanceadvantagesofcompositelaminatesalongwiththeinherentcapabilityofpiezoelectricmaterialstoadapttotheircurrentenvironment.Therefore…  相似文献   

16.
Buckling and postbuckling analysis is presented for microtubules subjected to torsion in thermal environments. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The governing equations are based on a higher order shear deformation theory. The thermal effects are included and the material properties are assumed to be temperature-dependent. The small scale parameter e0a is estimated by matching the buckling twist angle of microtubules obtained from the nonlocal shear deformable shell model with the existing result. The results show that the small scale effect plays an important role in the postbuckling of microtubules.  相似文献   

17.
Edge-compression fixture for buckling studies of corrugated board panels   总被引:2,自引:0,他引:2  
A test fixture, developed for evaluating the preand postbuckling response of simply supported, nearly flat, rectangular corrugated board panels subjected to edge compression is evaluated. The test fixture enables loading of panels into the postbuckling regime until collapse. The shadowmoiré method verified that buckling in the first mode occurred, and that there was symmetry of the adge-boundary conditions. Through an iterative regression model, experimental curves of load versus out-of-plane displacement for isotropic panels were fitted to an equation governing the nonlinear postbuckling response. This method provides the critical buckling load, a postbuckling parameter and the amplitude of initial imperfection of the panel. Comparison with analytical results revealed that simply supported boundary conditions were closely achieved. Examination of compressively loaded corrugated board panels showed that collapse occurred due to compressive failures of the facings in the highly stressed edge regions without severe influence from stress concentrations at load introduction and edge supports.  相似文献   

18.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

19.
含初缺陷裂纹损伤梁的冲击动力屈曲   总被引:1,自引:0,他引:1  
由Hamilton原理导出考虑初始缺陷及横向剪切变形时裂纹梁的动力屈曲控制方程;应用断裂力学中常用的线弹簧模型将裂纹引入到屈曲控制方程中;基于B-R动力屈曲判断准则,采用数值方法求解了受轴向冲击载荷作用时裂纹梁的动力屈曲;对比讨论了不同冲击速度、初始几何缺陷大小以及分布形式等因素对梁冲击动力屈曲的影响。  相似文献   

20.
开口复合材料柱壳屈曲与补救有限元分析   总被引:2,自引:0,他引:2  
用有限元法对含有轴向裂纹的开口加强复合材料柱壳结构进行了补救研究;分析其压缩屈曲强度与模态情况,得到了裂纹长度与屈曲强度的关系,并与无裂纹的结构进行了对比.结果表明:裂纹长度在200mm以下时,对整个结构承载能力影响很小;当裂纹长度继续增大时,屈曲区域从开口上方转移到裂纹附近,屈曲强度开始急剧下降.为了加强裂纹所在区域结构的承剪能力,进行适当的修补后,可使屈曲模态与无裂纹柱壳相同,且屈曲强度稍有增加,从而证明了所提出补救方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号