首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A new HB (Harmonic Balance)/AFT (Alternating Frequency Time) method is further developed to obtain synchronous and subsynchronous whirling response of nonlinear MDOF rotor systems. Using the HBM, the nonlinear differential equations of a rotor system can be transformed to algebraic equations with unknown harmonic coefficients. A technique is applied to reduce the algebraic equations to only those of the nonlinear coordinates. Stability analysis of the periodic solutions is performed via perturbation of the solutions. To further reduce the computational time for the stability analysis, the reduced system parameters (mass, damping, and stiffness) are calculated in terms of the already known harmonic coefficients. For illustration, a simple MDOF rotor system with a piecewise-linear bearing clearance is used to demonstrate the accuracy of the calculated steady-state solutions and their bifurcation boundaries. Employing ideas from modern dynamics theory, the example MDOF nonlinear rotor system is shown to exhibit subsynchronous, quasi-periodic and chaotic whirling motions.  相似文献   

2.
Analytical and numerical studies of multi-degree-of-freedom(MDOF) nonlinear stochastic or deterministic dynamic systems have long been a technical challenge.This paper presents a highly-efficient method for determining the stationary probability density functions(PDFs) of MDOF nonlinear systems subjected to both additive and multiplicative Gaussian white noises. The proposed method takes advantages of the sufficient conditions of the reduced Fokker-Planck-Kolmogorov(FPK) equation when constructing the trial solution. The assumed solution consists of the analytically constructed trial solutions satisfying the sufficient conditions and an exponential polynomial of the state variables, and delivers a high accuracy of the solution because the analytically constructed trial solutions capture the main characteristics of the nonlinear system. We also make use of the concept from the data-science and propose a symbolic integration over a hypercube to replace the numerical integrations in a higher-dimensional space, which has been regarded as the insurmountable difficulty in the classical method of weighted residuals or stochastic averaging for high-dimensional dynamic systems. Three illustrative examples of MDOF nonlinear systems are analyzed in detail. The accuracy of the numerical results is validated by comparison with the Monte Carlo simulation(MCS) or the available exact solution. Furthermore, we also show the substantial gain in the computational efficiency of the proposed method compared with the MCS.  相似文献   

3.
Bilinear systems can be viewed as a bridge between linear and nonlinear systems, providing a promising approach to handle various nonlinear identification and control problems. This paper provides a formal justification for the extension of interaction matrices to bilinear systems and uses them to express the bilinear state as a linear function of input–output data. Multiple representations of this kind are derived, making it possible to develop an intersection subspace algorithm for the identification of discrete-time bilinear models. The technique first recovers the bilinear state by intersecting two vector spaces that are defined solely in terms of input–output data. The new input–output-to-state relationships are also used to extend the equivalent linear model method for bilinear system identification. Among the benefits of the proposed approach, it does not require data from multiple experiments, and it does not impose specific restrictions on the form of input excitation.  相似文献   

4.
A stochastic minimax semi-active control strategy for multi-degrees-of-freedom (MDOF) strongly nonlinear systems under combined harmonic and wide-band noise excitations is proposed. First, a stochastic averaging procedure is introduced for controlled uncertain strongly nonlinear systems using generalized harmonic functions and the control forces produced by Magneto-rheological (MR) dampers are split into the passive part and the active part. Then, a worst-case optimal control strategy is derived by solving a stochastic differential game problem. The worst-case disturbances and the optimal semi-active controls are obtained by solving the Hamilton–Jacobi–Isaacs (HJI) equations with the constraints of disturbance bounds and MR damper dynamics. Finally, the responses of optimally controlled MDOF nonlinear systems are predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equations. Two examples are worked out in detail to illustrate the proposed control strategy. The effectiveness of the proposed control strategy is verified by using the results from Monte Carlo simulation.  相似文献   

5.
Though the Lyapunov function method is more efficient than the largest Lyapunov exponent method in evaluating the stochastic stability of multi-degree-of-freedom (MDOF) systems, the construction of Lyapunov function is a challenging task. In this paper, a specific linear combination of subsystems’ energies is proposed as Lyapunov function for MDOF nonlinear stochastic dynamical systems, and the corresponding sufficient condition for the asymptotic Lyapunov stability with probability one is then determined. The proposed procedure to construct Lyapunov function is illustrated and validated with several representative examples, where the influence of coupled/uncoupled dampings and excitation intensities on stochastic stability is also investigated.  相似文献   

6.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

7.
Nonlinear factors existing in engineering structures have drawn considerable attention, and nonlinear identification is a competent technique to understand the dynamic characteristics of nonlinear structures. Therefore, in this paper, a novel nonlinear separation subspace identification (NSSI) algorithm based on subspace algorithm and nonlinear separation strategy is proposed to conduct nonlinear parameter identification of nonlinear structures. For the proposed NSSI algorithm, the low-level excitation test is firstly conducted to obtain the transfer matrix in the linear response formula. Then, the obtained transfer matrix is used in the high-level excitation test to calculate the nonlinear response part by the proposed nonlinear separation strategy, and the subspace algorithm is utilized to identify the nonlinear parameter on the modified state-space model including only the nonlinear part. The proposed NSSI algorithm can reduce the coupling error caused by simultaneously processing both the large number part (corresponding to the linear part) and small number part (corresponding to the nonlinear part) in the traditional nonlinear subspace identification (NSI) algorithm. At last, two numerical experiments are given to validate the effectiveness of the developed novel nonlinear identification method. Furthermore, some influence factors are discussed to show the stability of the identification algorithm, and some comparisons between the proposed NSSI method and traditional NSI method are also conducted to demonstrate the advantages of the novel method.  相似文献   

8.
Transmissibility is a well-known linear system concept that has been widely applied in the diagnosis of damage in various engineering structural systems. However, in engineering practice, structural systems can behave non-linearly due to certain kinds of damage such as, e.g., breathing cracks. In the present study, the concept of transmissibility is extended to the non-linear case by introducing the Transmissibility of Non-linear Output Frequency Response Functions (NOFRFs). The NOFRFs are a concept recently proposed by the authors for the analysis of non-linear systems in the frequency domain. A NOFRF transmissibility-based technique is then developed for the detection and location of both linear and non-linear damage in MDOF structural systems. Numerical simulation results verify the effectiveness of the new technique. Experimental studies on a three-storey building structure demonstrate the potential to apply the developed technique to the detection and location of damage in practical MDOF engineering structures.  相似文献   

9.
The industrial structural systems always contain various kinds of nonlinear factors. Recently, a number of new approaches have been proposed to identify those nonlinear structures. One of the promising methods is the nonlinear subspace identification method (NSIM). The NSIM is derived from the principals of the stochastic subspace identification method (SSIM) and the internal feedback formulation. First, the nonlinearities in the system are regarded as internal feedback forces to its underlying linear dynamic system. The linear and nonlinear components of the identified system can be decoupled. Second, the SSIM is employed to identify the nonlinear coefficients and the frequency response functions of the underlying linear system. A typical SSIM always consists of two steps. The first step makes a projection of certain subspaces generated from the data to identify the extended observability matrix. The second one is to estimate the system matrices from the identified observability matrix. Since the calculated process of the NSIM is non-iterative and this method poses no additional problems on the part of parameterization, the NSIM becomes a promising approach to identify nonlinear structural systems. However, the result generated by the NSIM has its deficiency. One of the drawbacks is that the identified results calculated by the NSIM are not the optimal solutions which reduce the identified accuracy. In this study, a new time-domain subspace method, namely the nonlinear subspace-prediction error method (NSPEM), is proposed to improve the identified accuracy of nonlinear systems. In the improved version of the NSIM, the prediction error method (PEM) is used to reestimate those estimated coefficient matrices of the state-space model after the application of NSIM. With the help of the PEM, the identified results obtained by the NSPEM can truly become the optimal solution in the least square sense. Two numerical examples with local nonlinearities are provided to illustrate the effectiveness and accuracy of the proposed algorithm, showing advantages with respect to the NSIM in a noise environment.  相似文献   

10.
The dynamics of mechanical systems with dry friction elements, modelledby set-valued force laws, can be described by differential inclusions.An equilibrium set of such a differential inclusion corresponds to astationary mode for which the friction elements are sticking. Theattractivity properties of the equilibrium set are of major importancefor the overall dynamic behaviour of this type of systems. Conditionsfor the attractivity of the equilibrium set of MDOF mechanical systemswith multiple friction elements are presented. These results areobtained by application of a generalisation of LaSalle's principle fordifferential inclusions of Filippov-type. Besides passive systems, alsosystems with negative viscous damping are considered. For such systems,only local attractivity of the equilibrium set can be assured undercertain conditions. Moreover, an estimate for the region of attractionis given for these cases. The effectiveness of the results isillustrated by means of both 1DOF and MDOF examples.  相似文献   

11.
A new computational scheme using Chebyshev polynomials is proposed for the numerical solution of parametrically excited nonlinear systems. The state vector and the periodic coefficients are expanded in Chebyshev polynomials and an integral equation suitable for a Picard-type iteration is formulated. A Chebyshev collocation is applied to the integral with the nonlinearities reducing the problem to the solution of a set of linear algebraic equations in each iteration. The method is equally applicable for nonlinear systems which are represented in state-space form or by a set of second-order differential equations. The proposed technique is found to duplicate the periodic, multi-periodic and chaotic solutions of a parametrically excited system obtained previously using the conventional numerical integration schemes with comparable CPU times. The technique does not require the inversion of the mass matrix in the case of multi degree-of-freedom systems. The present method is also shown to offer significant computational conveniences over the conventional numerical integration routines when used in a scheme for the direct determination of periodic solutions. Of course, the technique is also applicable to non-parametrically excited nonlinear systems as well.  相似文献   

12.
We devise a method which is apt for the approximation of periodic solutions of strongly nonlinear or statically unstable oscillating systems. To this purpose we consider firstly a system which is canonically associated with ours, the so called elliptic core, and solve it in closed form; this solution is then used as a basis for the construction of a suitable set of trial functions which enable us to apply the Galerkin method in order to obtain the sought approximation. The technique is employed in a number of vibrating systems previously considered in the literature; the results are supported by numerical evidence. Finally we present some further results concerning the relationship between amplitude and period of nonlinear oscillators.  相似文献   

13.
非比例阻尼线性体系平稳随机地震响应计算的虚拟激励法   总被引:5,自引:0,他引:5  
应用复振型分解方法,将非比例阻尼线性体系在地震作用下的动力方程求解问题转化为若干个广义复振子的求解与叠加问题。通过假定地震地面运动为一零均值的平稳随机激励,应用虚拟激励法原理,推导得到了广义复振子动力坐标的解析计算公式,进而得到了以复振型为基础的非比例阻尼线性体系随机地震响应计算的一般实数解析解答。算例证实了这种方法的可靠性及高效率。  相似文献   

14.
This paper investigates nonsingular terminal sliding mode control for a class of uncertain systems with nonlinear inputs and its application in chaos control. When some of the system states are finite-time stable, the nonlinear items that coupled with these states may come into zeros in other subsystems. This will simplify the stability analysis of the whole system greatly. Compared with the traditional finite-time stabilization design method, the introduction of the terminal sliding mode can reduce the input dimensions. Only one control input is requested to realize chaos control of the Liu system when unmatched uncertainties and input nonlinearity coexist. The parameter matrices in the TSM can be determined through the solution of LMIS. Simulation results are given to demonstrate the effectiveness of the proposed method.  相似文献   

15.
This paper is concerned with the robust adaptive synchronization problem for a class of chaotic systems with actuator failures and unknown nonlinear uncertainty. Combining adaptive method and linear matrix inequality (LMI) technique, a novel type of robust adaptive reliable synchronization controller is proposed, which can eliminate the effect of actuator fault and nonlinear uncertainty on systems. After solving a set of LMIs, synchronization error between the master chaotic and slave chaotic systems can converge asymptotically to zero. Finally, illustrate examples about chaotic Chua’s circuit system and Lorenz systems are provided to demonstrate the effectiveness and applicability of the proposed design method.  相似文献   

16.
Most of the currently employed vibration-based identification approaches for structural damage detection are based on eigenvalues and/or eigenvectors extracted from dynamic response measurements, and strictly speaking, are only suitable for linear system. However, the inception and growth of damage in engineering structures under severe dynamic loadings are typical nonlinear procedures. Consequently, it is crucial to develop general structural restoring force and excitation identification approaches for nonlinear dynamic systems because the restoring force rather than equivalent stiffness can act as a direct indicator of the extent of the nonlinearity and be used to quantitatively evaluate the absorbed energy during vibration, and the dynamic loading is an important factor for structural remaining life forecast. In this study, based on the instantaneous state vectors and partially unknown excitation, a power series polynomial model (PSPM) was utilized to model the nonlinear restoring force (NRF) of a chain-like nonlinear multi-degree-of-freedom (MDOF) structure. To improve the efficiency and accuracy of the proposed approach, an iterative approach, namely weighted adaptive iterative least-squares estimation with incomplete measured excitations (WAILSE-IME), where a weight coefficient and a learning coefficient were involved, was proposed to identify the restoring force of the structure as well as the unknown dynamic loadings simultaneously. The response measurements of the structure, i.e., the acceleration, velocity, and displacement, and partially known excitations were utilized for identification. The feasibility and robustness of the proposed approach was verified by numerical simulation with a 4 degree-of-freedom (DOF) numerical model incorporating a nonlinear structural member, and by experimental measurements with a four-story frame model equipped with two magneto-rheological (MR) dampers mimicking nonlinear behavior. The results show the proposed approach by combining the PSPM and WAILSE-IME algorithm is capable of effectively representing and identifying the NRF of the chain-like MDOF nonlinear system with partially unknown external excitations, and provide a potential way for damage prognosis and condition evaluation of engineering structures under dynamic loadings which should be regarded as a nonlinear system.  相似文献   

17.
不确定非线性结构动力响应的区间分析方法   总被引:7,自引:0,他引:7  
研究多自由度非线性不确定参数系统的动力响应问题. 以区间数学为基础,将不确定 性参数用区间进行定量化,借助一阶Taylor级数,给出了近似估计非线性振动系统动力响 应范围的区间分析方法. 从数学证明和数值算例两方面,将其与概率摄动有限元法进行了比 较,结果显示区间分析方法对不确定参数先验信息具有要求较少、精度较高的优点.  相似文献   

18.
In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetric viscous damping is assembled. The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions. This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered. The theoretical analysis results are also verified by simulation studies.  相似文献   

19.
IntroductionAtpresentanewanddevelopingsubject—chaoticdynamicsstartsabroadprospectforanalysisofnonlinearsystem[1~ 5 ].Largerotatingmachineryisatypicalnonlinearnon_autonomoussystem .Thesaferunofrotorsystemisofgreatsignificancetosociallifeandeconomicdevelopment.Thestabilityisthekeytosafeoperation .Thesafestabilityanalysisandcontrolforlargesystemisnotonlyamajorbasicresearchbutalsoisveryimportanttosolvethesafeproblemsinlifeandproduction[6 ,7].Soar,althoughmanymathematicians,mechanistsandengineer…  相似文献   

20.
叶文伟  陈林聪  孙建桥 《力学学报》2022,54(12):3468-3476
自然界与工程中都普遍存在着随机扰动, 且大多数呈现出固有的非高斯性质, 若采用高斯激励建模可能会导致巨大的误差. 泊松白噪声作为一种典型且重要的非高斯激励模型, 已引起了广泛的关注. 目前, 泊松白噪声激励下系统的动态特性分析主要集中于稳态响应的研究, 而针对瞬态响应的求解难度仍较大, 需进一步发展. 本文引入径向基神经网络, 提出了一种泊松白噪声激励下单自由度强非线性系统瞬态响应预测的高效半解析方法. 首先将广义Fokker-Plank-Kolmogorov (FPK) 方程的瞬态解表示为一组含时变待定权值系数的高斯径向基神经网络; 然后采用有限差分法离散时间导数项, 并结合随机取样技术构造含时间递推式的损失函数; 最后通过拉格朗日乘子法使得损失函数最小化获得时变最优权值系数. 作为算例, 探究了两个经典强非线性系统, 并采用蒙特卡罗模拟方法对解析结果加以验证. 结果表明: 本文方法所获得的瞬时概率密度函数与蒙特卡罗模拟数据吻合地较好, 并且算法具备较高的计算效率. 在系统响应的整个演化过程中, 本文所提方法能够非常有效地捕捉到系统响应在各个时刻下的复杂非线性特征. 此外, 本文方法所获得的高精度半解析瞬态解, 不仅可作为基准解检验其他非线性随机振动分析方法的精度, 对于结构的优化设计也存在巨大的潜在应用价值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号