首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Restoring force and dynamic loadings identification for a nonlinear chain-like structure with partially unknown excitations
Authors:Jia He  Bin Xu  Sami F Masri
Institution:1. College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, China
2. Ministry of Education Key Laboratory of Building Safety and Energy Efficiency, Hunan University, Changsha, Hunan, 410082, China
3. Department of Civil Engineering, University of Southern California, Los Angeles, CA, 90089-2531, USA
Abstract:Most of the currently employed vibration-based identification approaches for structural damage detection are based on eigenvalues and/or eigenvectors extracted from dynamic response measurements, and strictly speaking, are only suitable for linear system. However, the inception and growth of damage in engineering structures under severe dynamic loadings are typical nonlinear procedures. Consequently, it is crucial to develop general structural restoring force and excitation identification approaches for nonlinear dynamic systems because the restoring force rather than equivalent stiffness can act as a direct indicator of the extent of the nonlinearity and be used to quantitatively evaluate the absorbed energy during vibration, and the dynamic loading is an important factor for structural remaining life forecast. In this study, based on the instantaneous state vectors and partially unknown excitation, a power series polynomial model (PSPM) was utilized to model the nonlinear restoring force (NRF) of a chain-like nonlinear multi-degree-of-freedom (MDOF) structure. To improve the efficiency and accuracy of the proposed approach, an iterative approach, namely weighted adaptive iterative least-squares estimation with incomplete measured excitations (WAILSE-IME), where a weight coefficient and a learning coefficient were involved, was proposed to identify the restoring force of the structure as well as the unknown dynamic loadings simultaneously. The response measurements of the structure, i.e., the acceleration, velocity, and displacement, and partially known excitations were utilized for identification. The feasibility and robustness of the proposed approach was verified by numerical simulation with a 4 degree-of-freedom (DOF) numerical model incorporating a nonlinear structural member, and by experimental measurements with a four-story frame model equipped with two magneto-rheological (MR) dampers mimicking nonlinear behavior. The results show the proposed approach by combining the PSPM and WAILSE-IME algorithm is capable of effectively representing and identifying the NRF of the chain-like MDOF nonlinear system with partially unknown external excitations, and provide a potential way for damage prognosis and condition evaluation of engineering structures under dynamic loadings which should be regarded as a nonlinear system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号