首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

2.
Zhu  W. Q.  Deng  M. L.  Huang  Z. L. 《Nonlinear dynamics》2003,33(2):189-207
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged Itô equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.  相似文献   

3.
A stochastic fractional optimal control strategy for quasi-integrable Hamiltonian systems with fractional derivative damping is proposed. First, equations of the controlled system are reduced to a set of partially averaged It $\hat{o}$ stochastic differential equations for the energy processes by applying the stochastic averaging method for quasi-integrable Hamiltonian systems and a stochastic fractional optimal control problem (FOCP) of the partially averaged system for quasi-integrable Hamiltonian system with fractional derivative damping is formulated. Then the dynamical programming equation for the ergodic control of the partially averaged system is established by using the stochastic dynamical programming principle and solved to yield the fractional optimal control law. Finally, an example is given to illustrate the application and effectiveness of the proposed control design procedure.  相似文献   

4.
A new procedure for designing optimal bounded control of quasi-nonintegrable Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method for quasi-nonintegrable Hamiltonian systems and the stochastic maximum principle. First, the stochastic averaging method for controlled quasi-nonintegrable Hamiltonian systems is introduced. The original control problem is converted into one for a partially averaged equation of system energy together with a partially averaged performance index. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The bounded optimal control forces are obtained from the maximum condition and solving the forward–backward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is stationary process, and the FBSDE is reduced to an ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation associated with the fully averaged Itô equation of the controlled system. For comparison, the bang–bang control is also presented. An example of two degree-of-freedom quasi-nonintegrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness. Numerical results show that the proposed control strategy has higher control efficiency and less discontinuous control force than the corresponding bang–bang control at the price of slightly less control effectiveness.  相似文献   

5.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

6.
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS   总被引:3,自引:0,他引:3  
I. INTRODUCTION Magneto-rheological (MR) ?uid as a smart material possesses fairly good essential characteristics suchas reversible change between liquid and semi-solid in milliseconds with a controllable yield strengthwhen exposed to a magnetic ?eld. A…  相似文献   

7.
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with multi-time-delayed feedback control subject to wide-band noise excitations is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into an ordinary quasi-integrable Hamiltonian system. The averaged It? stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then the expression for average bifurcation parameter of the averaged system is obtained approximately and a criterion for determining the stochastic Hopf bifurcation induced by time-delayed feedback control forces in the original system using average bifurcation parameter is proposed. An example is worked out in detail to illustrate the criterion and its validity and to show the effect of time delay in feedback control on stochastic Hopf bifurcation of the system.  相似文献   

8.
A new procedure for designing optimal control of quasi non-integrable Hamiltonian systems under stochastic excitations is proposed based on the stochastic averaging method for quasi non-integrable Hamiltonian systems and the stochastic maximum principle. First, the control problem consisting of 2n-dimensional equations governing the controlled quasi non-integrable system and performance index is converted into a partially averaged one consisting of one-dimensional equation of the controlled system and performance index by using the stochastic averaging method. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The optimal control forces are determined from the maximum condition and solving the forward?Cbackward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is a stationary process and the FBSDE is reduced to a partial differential equation. Finally, the response statistics of optimally controlled system is predicted by solving the Fokker?CPlank equation (FPE) associated with the fully averaged It? equation of the controlled system. An example of two degree-of-freedom (DOF) quasi non-integrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

9.
The response of quasi-integrable Hamiltonian systems with delayed feedback bang–bang control subject to Gaussian white noise excitation is studied by using the stochastic averaging method. First, a quasi-Hamiltonian system with delayed feedback bang–bang control subjected to Gaussian white noise excitation is formulated and transformed into the Itô stochastic differential equations for quasi-integrable Hamiltonian system with feedback bang–bang control without time delay. Then the averaged Itô stochastic differential equations for the later system are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution of the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both nonresonant and resonant cases. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed method and the effect of time delayed feedback bang–bang control on the response of the systems.  相似文献   

10.
A new bounded optimal control strategy for multi-degree-of-freedom (MDOF) quasi nonintegrable-Hamiltonian systems with actuator saturation is proposed. First, an n-degree-of-freedom (n-DOF) controlled quasi nonintegrable-Hamiltonian system is reduced to a partially averaged Itô stochastic differential equation by using the stochastic averaging method for quasi nonintegrable-Hamiltonian systems. Then, a dynamical programming equation is established by using the stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang–bang control is derived. Finally, the response of the optimally controlled system is predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equation. An example of two controlled nonlinearly coupled Duffing oscillators is worked out in detail. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and that chattering is reduced significantly compared with the bang–bang control strategy.  相似文献   

11.
 近几年来,笔者提出与发展了随机激励的耗散的哈密顿系统理 论,包括精确平稳解、等效非线性系统法、拟哈密顿系统随机平均法、 拟哈密顿系统的随机稳定性与随机分岔、首次穿越损坏分析方法及非 线性随机最优控制策略,从而构成了一个非线性随机动力学与控制的 哈密顿理论框架.本文简要介绍这一理论框架.  相似文献   

12.
Zhu  W. Q.  Deng  M. L. 《Nonlinear dynamics》2004,35(1):81-100
A strategy for designing optimal bounded control to minimize theresponse of quasi non-integrable Hamiltonian systems is proposed basedon the stochastic averaging method for quasi non-integrable Hamiltoniansystems and the stochastic dynamical programming principle. Theequations of motion of a controlled quasi non-integrable Hamiltoniansystem are first reduced to an one-dimensional averaged Itô stochasticdifferential equation for the Hamiltonian by using the stochasticaveraging method for quasi non-integrable Hamiltonian systems. Then, thedynamical programming equation for the control problem of minimizing theresponse of the averaged system is formulated based on the dynamicalprogramming principle. The optimal control law is derived from thedynamical programming equation and control constraints without solvingthe equation. The response of optimally controlled systems is predictedthrough solving the Fokker–Planck–Kolmogrov (FPK) equation associatedwith completely averaged Itô equation. Finally, two examples are workedout in detail to illustrate the application and effectiveness of theproposed control strategy.  相似文献   

13.
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Itô stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Itô equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Itô equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.  相似文献   

14.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

15.
A procedure for calculating the largest Lyapunov exponent and determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. The averaged stochastic differential equations (SDEs) of quasi-integrable and non-resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method for quasi-Hamiltonian systems and the stochastic jump-diffusion chain rule. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii's procedure to the averaged SDEs and the stochastic stability of the original systems is determined approximately. An example is given to illustrate the application of the proposed procedure and its effectiveness is verified by comparing with the results from Monte Carlo simulation.  相似文献   

16.
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed.The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems.The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation.A bilinear controller by using the direct method of Lyapunov is introduced.The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.  相似文献   

17.
朱位秋  黄志龙 《力学进展》2000,30(4):481-494
近几年中,利用Hamilton系统的可积性与共振性概念及Poisson括号性质等,提出了高斯白噪声激励下多自由度非线性随机系统的精确平稳解的泛函构造与求解方法,并在此基础上提出了等效非线性系统法,提出了拟Hamilton系统的随机平均法,并在该法基础上研究了拟Hamilton系统随机稳定性、随机分岔、可靠性及最优非线性随机控制,从而基本上形成了一个非线性随机动力学与控制的Hamilton理论框架.本文简要介绍了这方面的进展.  相似文献   

18.
Reliability of first-passage type for wideband noise-excited viscoelastic systems and the quasi-optimal bounded control strategy for maximizing system reliability are investigated. The viscoelastic term is approximately replaced by equivalent damping and stiffness separately. By using the stochastic averaging method based on the generalized harmonic functions, the averaged Itô stochastic differential equation is obtained for the system amplitude. The associated backward Kolmogorov equation is derived and solved to obtain the system reliability. By applying the dynamic programming principle to the averaged system, the quasi-optimal bounded control is devised by maximizing system reliability. The application of the proposed analytical procedures and the effectiveness of the control strategy are illustrated through one example.  相似文献   

19.
An optimal bounded control strategy for smart structure systems as controlled Hamiltonian systems with random excitations and noised observations is proposed. The basic dynamic equations for a smart structure system with smart sensors and actuators are firstly given. The nonlinear stochastic control system with noised observations is then obtained from the simplified smart structure system, and the system is expressed by generalized Hamiltonian equations with control, random excitation and dissipative forces. The optimal control problem for nonlinear stochastic systems with noised observations includes two parts: optimal state estimation and optimal response control based on estimated states, which are coupled each other. The probability density of optimally estimated systems has generally infinite dimensions based on the separation theorem. The proposed optimal control strategy gives an approximate separate solution. First, the optimally estimated system state is determined by the observations based on the extended Kalman filter, and the estimated nonlinear system with controls and stochastic excitations is obtained which has finite-dimensional probability density. Second, the dynamical programming equation for the estimated system is determined based on the stochastic dynamical programming principle. The control boundedness due to actuator saturation is considered, and the optimal bounded control law is obtained by the programming equation with the bounded control constraint. The optimal control depends on the estimated system state which is determined by noised observations. The proposed optimal bounded control strategy is finally applied to a single-degree-of-freedom nonlinear stochastic system with control and noised observation. The remarkable vibration control effectiveness is illustrated with numerical results. Thus the proposed optimal bounded control strategy is promising for application to nonlinear stochastic smart structure systems with noised observations.  相似文献   

20.
An optimal vibration control strategy for partially observable nonlinear quasi Hamiltonian systems with actuator saturation is proposed. First,a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged It stochastic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle,respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control effciency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号