首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
王东  徐超  万强  胡杰 《固体力学学报》2017,38(6):521-529
提出一种考虑微凸体弹塑性接触变形影响的粗糙表面法向接触力学模型。采用有限元模拟微凸体弹塑性接触过程,分析不同塑性屈服条件对微凸体接触载荷和实际接触面积的影响。再根据微凸体接触面上压力分布的变化规律,将微凸体的接触状态分为完全弹性接触阶段、弹塑性接触阶段、完全塑性接触阶段。分析接触面压力变化规律对微凸体法向接触载荷-变形的影响,再利用GW模型的数理统计分析的方法得到粗糙表面的法向接触载荷。将本文提出的模型与完全弹性模型、CEB模型、ZMC模型、KE模型、JG模型进行对比,并且研究了塑性指数对粗糙面接触载荷-平均高度距离的影响。结果表明,本文提出的模型能够更好地描述微凸体法向接触载荷与接触变形的变化趋势,模型预测粗糙表面法向载荷与ZMC、KE模型具有较好的一致性;粗糙面接触载荷随着平均接触距离增加而减少,随着塑性指数的增加,不同模型预测的法向接触载荷差异逐渐增大。  相似文献   

2.
基于泛形理论和赫兹接触理论,通过泛形海岛分布描述粗糙表面的形貌从而建立结合面弹性接触模型,求解结合面的法向接触刚度。假设粗糙接触表面微凸体的高度满足高斯分布,通过赫兹接触理论建立单个微凸体的微观接触模型,利用粗糙表面的泛形复杂度D与面积度量尺码的最小下确界as确定表面形貌。泛形复杂度反映微凸体在粗糙表面上占据的空间大小程度;度量尺码下确界是接触过程中的最小接触面积。通过泛形复杂度和面积最小下确界推导出粗糙表面法向接触刚度的解析表达式。数值算例结果表明:在相同的面积尺度区间内,粗糙表面的法向接触刚度随着泛形复杂度的增加而增加,反之减小。当接触表面的泛形复杂度不变时,粗糙表面的法向接触刚度随最小下确界的减小而增大。泛形复杂度的较大时,最小下确界的变化对于接触刚度的影响更加明显。通过与已发表的文献结果对比分析之后,发现采用泛形海岛模型所得到的结合面接触刚度与文献中实验结果吻合较好。  相似文献   

3.
提出一种同时考虑粗糙面上微凸体弹性变形和塑性接触的切向黏滑摩擦建模方法。采用Hertz弹性理论和Mindlin解描述弹性接触微凸体的切向载荷和相对变形的关系;采用AF(Abbott-Firstone)塑性理论和Fujimoto模型描述塑性接触微凸体切向载荷和相对变形的关系。再利用GW(Greenwood-Williamson)模型统计分析方法建立粗糙表面切向载荷和相对变形之间的关系。将模型与仅考虑微凸体弹性接触情况的模型进行对比,并研究了不同塑性指数对切向载荷和相对变形关系的影响。结果表明:与完全弹性接触模型相比,本文模型引入了塑性接触理论,能够更好地描述粗糙表面切向载荷和相对变形关系,并且考虑不同接触条件下弹性变形微凸体和塑性变形微凸体对切向接触载荷的贡献,在微滑移阶段,主要由弹性接触变形影响,而在进入宏观滑移阶段之后,切向行为主要由塑性变形影响。界面切向载荷由黏着和滑移接触作用共同决定,随着切向变形的增加,滑移接触力逐渐增加,而黏着接触力先增加后减少,反映了界面由微滑移逐渐向宏滑移演化的过程。随着塑性指数的增加,粗糙面上发生塑性接触的微凸体数目逐渐增加,切向黏滑行为主要受到塑性接触特征的控制。  相似文献   

4.
粗糙表面接触力学问题的重新分析   总被引:2,自引:0,他引:2  
为了克服基于统计学参数的接触模型的尺度依赖性以及现有接触分形模型推导过程中初始轮廓表征受控于接触面积或取样长度的不足,基于粗糙表面轮廓分形维数$D$、尺度系数$G$ 和最大微凸体轮廓基底尺寸$l$,建立了新的粗糙表面接触分形模型,探讨了微凸体变形机制、粗糙表面的真实接触面积和接触载荷的关系,揭示了接触界面的孔隙率和真实接触面积随端面形貌、表面接触压力等参数变化的规律,给出了不同形貌界面被压实的最大变形量. 结果表明:微凸体变形从弹性变形开始,并随着平均接触压力$p_{\rm m}$ 的增大逐步向弹塑性变形和完全塑性变形转变;接触界面的初始孔隙率$\phi_{0}$ 随$D$ 的增大而增大,压实孔隙所需要的最大变形量$\delta $ 也随之增大;接触压力$p_{\rm c}$ 增大,孔隙率$\phi$ 减小,并随着$D$ 的增大和$G$ 减小,$\phi$ 快速减小,直至填实,变为零;$D$ 较小时,$G$ 的增大对真实接触面积的增大影响较小;$D$ 较大时,$G$ 的增大对真实接触面积的增大作用明显. 研究成果为端面摩擦副的润滑与密封设计提供了理论基础.   相似文献   

5.
摘要:将结合面微凸体拓展为椭球体,基于KE有限元模型,类比球形微凸体在弹塑性接触变形阶段法向载荷、接触面积以及变形量之间的关系,根据椭球体的弹性接触理论,采用代入法得到了表征椭球形微凸体弹塑性接触变形机制的对应关系式。结合三维各向异性分形几何理论得到了结合面接触点离心率的有效区间为[0,0.7374],在此基础上,假设结合面接触点离心率分布在有效区间内,在该区间上服从指数分布,且与接触点面积分布相互独立,根据概率论以及接触点的面积大小分布函数,获得了关于结合面接触点面积与离心率的二维联合分布密度函数,进而建立了包含椭球形微凸体完全弹性、弹塑性以及完全塑性三种变形机制的结合面法向接触刚度分形模型。所建模型理论刚度与实验数据的对比结果,表明了模型的正确性及有效性,能较好的预测固定结合面在轻载状态下的法向接触刚度。  相似文献   

6.
弹塑性微凸体侧向接触相互作用能耗   总被引:3,自引:2,他引:1  
传统的结合面研究多基于光滑刚性平面与等效粗糙表面接触假设,忽略了结合面上微凸体侧向接触及相邻微凸体之间的相互作用,这导致理论模型与实际结合面存在较大出入.针对承受法向静、动态力的机械结合面,从微观上研究了微凸体侧向接触及相互作用的接触能耗.将法向静、动态力分解为法向分力和切向分力,获取弹性/弹塑性/塑性阶段考虑微凸体侧接触及相互作用的加、卸载法向分力-变形和切向分力-位移的关系.通过力的合成定理,从而获取加、卸载法向合力与总变形之间的关系,由于法向分力产生的塑性变形及切向分力产生的摩擦,导致加载、卸载法向合力-总变形曲线存在迟滞回线.通过对一个加、卸载周期内的法向合力-总变形曲线积分,获得一个周期的微凸体接触能耗,包括应变能耗及摩擦能耗.仿真分析表明:微凸体在3个阶段的能耗均随变形的增大而非线性增大.微凸体侧向接触角度越大,能耗越大,且在弹性阶段最为明显.在弹性阶段,仅存在侧向的摩擦能耗,故结合面在低载荷作用下必须采用双粗糙表面假设.在塑性阶段,由于微凸体接触能耗为应变能耗,且接触角对其能耗影响甚微,故结合面在大载荷作用下可采用单平面假设对其进行研究.相对于KE和Etsion模型,本文提出的模型与Bartier的实验结果更吻合.  相似文献   

7.
为了克服基于统计学参数的接触模型的尺度依赖性以及现有接触分形模型推导过程中初始轮廓表征受控于接触面积或取样长度的不足,基于粗糙表面轮廓分形维数D、尺度系数G和最大微凸体轮廓基底尺寸l,建立了新的粗糙表面接触分形模型,探讨了微凸体变形机制、粗糙表面的真实接触面积和接触载荷的关系,揭示了接触界面的孔隙率和真实接触面积随端面形貌、表面接触压力等参数变化的规律,给出了不同形貌界面被压实的最大变形量.结果表明:微凸体变形从弹性变形开始,并随着平均接触压力pm的增大逐步向弹塑性变形和完全塑性变形转变;接触界面的初始孔隙率φ_0随D的增大而增大,压实孔隙所需要的最大变形量δ也随之增大;接触压力p_c增大,孔隙率φ减小,并随着D的增大和G减小,φ快速减小,直至填实,变为零;D较小时,G的增大对真实接触面积的增大影响较小;D较大时,G的增大对真实接触面积的增大作用明显.研究成果为端面摩擦副的润滑与密封设计提供了理论基础.  相似文献   

8.
表面形貌变形对塑性成形滑动接触界面摩擦的影响   总被引:2,自引:2,他引:0  
为了更好地理解塑性成形滑动接触界面的摩擦行为,构建了一种新型的摩擦试验装置,运用表面纹理化技术制备了两类表面形貌的1050铝材试件,在不同的接触压力和滑动速度条件下进行一系列拉伸摩擦试验.对试验前后试件三维表面形貌进行了测量;提取真实接触面积比、封闭空体面积比和开放空体面积比等三维表面参数,来描述试件表面形貌的变化.试验发现:摩擦系数随名义接触压力和滑动速度增加而逐渐减小;试件初始表面形貌对摩擦有明显的影响;试件表面形貌和参数随接触条件出现了规律性变化.基于机械流变模型的分析表明:随着试件表面形貌变形,不同的机理决定界面摩擦行为,摩擦系数对名义接触压力和滑动速度的依赖性可分别归因于微观塑性流体动压润滑效应和入口区流体动压牵引效应.  相似文献   

9.
固-液接触状态广泛存在于机床核心单元关键零部件的接触运动副中,精确获得固-液结合面法向接触刚度及阻尼参数是高档数控机床产品在研发阶段就存在的一个关键理论与技术问题,并且仍然尚未根本解决。固-液结合面在介观层面上表现为两个粗糙表面的接触,在微观层面上表现为微凸体之间的接触,并在中/重载荷作用下微凸体可能会发生弹性/弹塑性/塑性变形。为了揭示静动态外载荷对固-液结合面接触刚度及阻尼的影响,分别基于GW模型、KKE模型和AF模型对接触微凸体弹性/弹塑性/塑性变形展开研究,并结合流体动力润滑REYNOLDS方程,建立了考虑接触微凸体弹性/弹塑性/塑性变形的固-液结合面接触刚度及阻尼模型。并对其进行实验验证,结果表明:随着预载荷的增大固-液结合面法向动态接触刚度表现出先减小后增大的规律,当接触载荷小于某阈值时动态接触刚度较大,反之静态接触刚度较大;法向动态接触刚度随着法向相对位移幅值的增大而增大,在低载荷时呈线性规律,而高载荷呈非线性规律;法向动态接触刚度随激振频率增大呈线性增大,且载荷越大线性斜率越小。对于法向接触阻尼,随着法向相对位移幅值和接触载荷增大呈非线性增大,随着激振频率增大几乎不变。精确获得固-液结合面法向接触刚度和阻尼及其关键因素的影响规律,对机械系统的分析、设计、优化以及静、动态性能控制都具有重要的理论意义。  相似文献   

10.
针对工程中常见预紧力作用下的搭接接头,研究其在小幅切向位移激励时的切向位移响应问题,为此提出一种新的基于实际表面形貌和材料性能参数的滑移力密度分布函数.应用该分布函数得到搭接接头切向响应本构模型,并获得单位加载周期内的迟滞曲线和能量耗散值,通过与已出版的实验结果相对比,发现得到的模拟值与实验结果吻合,证明该模型的合理性.在此基础上利用该分布函数研究了接合面切向位移与切向力、切向接触刚度及能量耗散之间的关系,结果表明:建立的模型能很好地描述接合面间切向力与切向位移之间的关系,临界滑移力函数开始迅速上升,到达最大值后迅速收敛到零;切线力与切向位移之间表现出非线性特性,随着切向位移的增大,切向接触刚度表现出"软化"现象;初始切向刚度与法向载荷、粗糙度参数及塑性指数有关,对于确定的接触表面,法向力越大,初始切向刚度越大;初始切向刚度同样也随着塑性指数的增大而增大.  相似文献   

11.
依据各向异性分形几何理论,将结合面微凸体拓展为椭球体,结合微凸体接触点面积大小分布函数以及概率论相关理论获得关于椭圆形接触点接触面积以及离心率的二维联合分布密度函数,应用椭球体的赫兹接触理论,进而建立了依据各向异性分形理论的结合面椭圆弹塑性法向接触刚度模型,并采用MATLAB软件对影响结合面法向刚度的相关因素进行了数值仿真及结果分析。结果表明:结合面椭圆形接触点离心率分布情形对结合面总刚度具有明显影响,结合面总刚度随形状参数 的增大而增大,却随着形状参数 的增大而减小;结合面法向刚度随法向载荷的增大而增大;在同一载荷作用下,结合面法向接触刚度随塑性指数增大而增大,随分形粗糙度的增大而减小,但是随分形维数的增大而先增后减。该模型对模型优化进而提高计算精度提供了一定的理论依据。  相似文献   

12.
占旺龙  李卫  黄平 《力学学报》2020,52(2):462-471
针对工程中常见预紧力作用下的搭接接头,研究其在小幅切向位移激励时的切向位移响应问题,为此提出一种新的基于实际表面形貌和材料性能参数的滑移力密度分布函数.应用该分布函数得到搭接接头切向响应本构模型,并获得单位加载周期内的迟滞曲线和能量耗散值, 通过与已出版的实验结果相对比,发现得到的模拟值与实验结果吻合, 证明该模型的合理性.在此基础上利用该分布函数研究了接合面切向位移与切向力、切向接触刚度及能量耗散之间的关系,结果表明: 建立的模型能很好地描述接合面间切向力与切向位移之间的关系,临界滑移力函数开始迅速上升, 到达最大值后迅速收敛到零;切线力与切向位移之间表现出非线性特性, 随着切向位移的增大,切向接触刚度表现出"软化"现象;初始切向刚度与法向载荷、粗糙度参数及塑性指数有关, 对于确定的接触表面,法向力越大, 初始切向刚度越大; 初始切向刚度同样也随着塑性指数的增大而增大.   相似文献   

13.
机械密封在干摩擦状态下的摩擦界面热力耦合分析   总被引:1,自引:0,他引:1  
依据W-M分形函数建立了接触式机械密封摩擦副三维瞬态滑动接触模型,考虑了接触微凸体之间相互机械作用和摩擦的热力耦合,基于ABAQUS分析平台,首次提出了能够模拟机械密封摩擦副回转运动的计算模型,仿真分析了机械密封摩擦副在干运转条件下的摩擦特性. 研究结果表明:接触面温度分布不均匀,局部温度很高,在接触微凸体中心区域出现极值;在滑动后很短时间内温度急剧上升,随着滑动进行,接触节点温度继续升高,但是温升速率减缓;粗糙体轴向温度梯度较大,其亚表层区域存在较大的热应力,易发生热损伤失效;在接触微凸体轴向距表层较近的局部区域存在拉应力,滑动行为会使微凸体内部拉应力区域扩大,拉应力的数值也增大. 微凸体接触区轴向上的应力状态是变化的,依次为压应力-拉应力-压应力.   相似文献   

14.
为建立更完善和精确的结合面接触刚度模型,本文根据分形理论和摩擦学原理,从微观角度建立了考虑摩擦因素的结合面切向接触刚度分形预估模型.通过数值仿真分析研究了接触载荷、分形维数、摩擦系数和接触面积等因素对结合面切向接触刚度的影响.分析结果表明:结合面切向接触刚度随法向载荷和分形维数的增加而增大,而随分形尺度参数的增大而减小;摩擦系数对结合面切向接触刚度的影响较大,不同实际接触面积下的切向刚度相差较大;当分形维数较小时,摩擦系数对结合面切向刚度的影响将降低.这些研究对于进一步开展结合面的动力学特性研究具有重要意义.  相似文献   

15.
弹性流体动力润滑状态通常出现在机械高副零部件的点/线接触部位,如齿轮、轴承和蜗轮蜗杆等. 宏观上点/线接触在介观层面表现为两粗糙表面的接触,在微观层面上则又表现为微凸体间的接触. 由于在中/重载荷作用下,粗糙表面上的微凸体发生接触后会产生弹塑性/塑性变形,从而使得两粗糙表面的弹流润滑接触转变为弹塑性流体动力润滑接触. 此外,界面的接触刚度决定了机械装备的整机刚度. 为了精确获得弹性流体动力润滑状态下界面法向接触刚度及其主要影响因素,基于界面的法向接触刚度由固体接触刚度和润滑油膜刚度两部分构成的思想,根据固体弹塑性理论和流体动力学理论,分别对界面间微凸体侧接触及部分膜流体动力润滑进行分析,从微观入手揭示双粗糙表面弹塑性流体动力润滑接触机理,进而建立考虑微凸体侧接触弹塑性变形的流体动力润滑界面法向接触刚度模型. 通过仿真分析,揭示了法向载荷、卷吸速度、表面粗糙度及润滑介质特性等因素对润滑界面法向接触刚度的影响规律. 研究表明:在相同速度、粗糙度及润滑油黏度的工况下,固体接触刚度和油膜接触刚度均随着法向接触载荷的增加呈非线性增大;在相同载荷、速度及润滑油黏度的工况下,接触表面粗糙度越大,表面形貌对于润滑状态的影响较强,固体接触刚度占界面总刚度的主要部分,界面主要由固体承载;在相同载荷、粗糙度及润滑油黏度工况下,随着卷吸速度的增大,固体接触刚度逐渐减小,油膜刚度占界面总刚度的主要部分;在相同载荷、粗糙度及速度工况下,随着润滑油黏度的增大,油膜刚度基本保持不变,固体接触刚度基本不受润滑油黏度的影响. 通过理论建模准确获得单位面积弹塑性流体动力润滑结合面法向接触刚度,对改善机械装备动态性能、提高机械装备的可靠性具有重要的理论和实际意义.   相似文献   

16.
盾构滚刀的磨损极大影响了隧道工程的掘进效率,滚刀主要发生冲击-滑动(冲滑)复合磨损,而刀盘与地层之间的相对刚度对滚刀的磨损行为存在显著影响,因此本文中在自主研制冲滑复合摩擦磨损试验机上对滚刀刀圈材料H13钢进行不同结构刚度下的磨损试验,并采用光学显微镜、扫描电镜和白光干涉仪等微观分析设备对不同结构刚度下H13钢的冲滑复合磨损特性和机理进行了分析和揭示. 结果表明:随着结构刚度的增大,压载荷作用时间增长并逐渐起主导作用,摩擦副在滑动区接触时间增长,H13钢损伤最严重区域有沿着冲滑方向移动的趋势,相应地,磨损机制由磨粒磨损变为磨粒磨损与黏着磨损混合形式. 在本研究中再现了盾构滚刀冲滑复合磨损的界面微观工作状态,深入探究了滚刀刀圈材料的微观磨损机理,可辅助了解滚刀与不同软硬程度地层间的相互作用,并为滚刀刀圈材料的磨损性能评价提供了新的研究方法和手段.   相似文献   

17.
粗糙表面法向接触刚度的分形模型   总被引:6,自引:1,他引:5  
提出了以往有关粗糙表面法向接触刚度理论研究工作的缺陷与不足,并在一定的前提假设下,基于球体与平面的接触理论和粗糙表面的分形接触理论,从理论上给出了具有尺度独立性的粗糙表面法向接触刚度分形模型,并进行了数字仿真研究。  相似文献   

18.
单峰接触研究及其在分形表面接触中的应用   总被引:2,自引:1,他引:1  
基于有限元方法,建立了弹塑性单峰的接触模型.粗糙峰为理想的弹塑性材料,为了考虑不同的材料特性对微凸体变形的影响,分别对9种不同的材料进行了分析.根据有限元计算结果,分析了接触面积,平均接触压力和接触力与变形干涉量之间的关系,并进行了经验公式的拟合.单峰接触所经历的4个不同的阶段,以及不同阶段之间的转化点均作了明确的表达.然后,根据分形理论,将单峰接触模型扩展到了三维的粗糙表面的接触,并提出了一个计算接触表面法向刚度的模型.通过与实验数据和以往模型的结果对比,证明本文中所提出的模型具有较高的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号