首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel size-dependent functionally graded(FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton's principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.  相似文献   

2.
Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external excitation frequency in the vicinities of the first and second natural frequencies is studied by adopting the multivariate Lindstedt-Poincaré(L-P) method. Based on the root discriminant of the frequencyamplitude equation under internal resonance conditions, theoretical analyses are performed to investigate the scale effects of the resonance region and the critical external excitation amplitude. Numerical results show that the region of internal resonance is related to the amplitude of the external excitation. Particularly, the internal resonance disappears after a certain critical value of the external excitation amplitude is reached.It is also shown that the scale parameters, i.e., the nonlocal parameters and the material characteristic length parameters, respectively, reduce and increase the critical amplitude,leading to a promotion or suppression of the occurrence of internal resonance. In addition,the scale parameters affect the size of the enclosed loop of the bifurcated solution curves as well by changing their intersection, divergence, or tangency.  相似文献   

3.
利用非局部应变梯度理论研究了纳米板横向自由振动特性。通过迭代法获得非局部应力的渐近表达式,利用哈密顿变分原理推导了纳米板的振动控制方程。针对四边简支边界条件,运用双重三角级数法给出了板固有频率的表达式,然后研究了非局部参数、材料特征参数、几何尺寸对纳米板自振频率的影响。数值结果表明:非局部效应会弱化纳米板的等效刚度,因而使板的固有频率降低,应变梯度效应则与之相反,两类效应仅在纳米尺度下对自振频率有显著影响;板几何尺寸的改变也会对其振动频率产生重要影响。  相似文献   

4.

In this study, the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects (SEs). The nanoplates are composed of a composite layer reinforced by graphene and two piezoelectric surface layers. Utilizing the modified Halpin-Tsai model, the material parameters of composite layers are obtained. The displacement field is determined by the sinusoidal shear deformation theory (SSDT). The Euler-Lagrange equation is derived by employing Hamilton’s principle and the constitutive equations of piezoelectric layers considering the SEs. Subsequently, the nonlocal strain gradient theory (NSGT) is used to obtain the equations of motion. Next, the effects of scale parameters, graphene distribution, orthotropic viscoelastic foundation, and SEs on the propagation behavior are numerically examined. The results reveal that the wave frequency is a periodic function of the orthotropic angle. Furthermore, the wave frequency increases with the increase in the SEs.

  相似文献   

5.
This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation. It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates. The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined hi...  相似文献   

6.
基于非局部应变梯度理论,考虑周围弹性介质的影响,研究纳米圆轴的扭转自由振动。首先通过Hamilton原理推导纳米圆轴扭转振动的控制方程及边界条件,接着采用微分求积法得到控制方程及三类边界条件的离散形式,最后由数值计算结果分析扭转振动特性。讨论了两个小尺度参数和弹性介质刚度的变化对振动频率的影响,并通过小尺度参数比对振动频率的影响分析两个尺度参数的耦合作用。研究结果表明,扭转自由振动频率随非局部参数增加而减小,随应变梯度尺度参数、弹性介质刚度增加而增大;当非局部参数大于应变梯度尺度参数时,小尺度效应体现为非局部效应,相反则体现为应变梯度效应。  相似文献   

7.
This work is concerned with the thermo-electro-mechanical coupling transverse vibrations of axially moving piezoelectric nanobeams which reveal potential applications in self-powered components of biomedical nano-robot. The nonlocal theory and Euler piezoelectric beam model are employed to develop the governing partial differential equations of the mathematical model for axially moving piezoelectric nanobeams. The natural frequencies of nanobeams under simply supported and fully clamped boundary constraints are numerically determined based on the eigenvalue method. Subsequently, some detailed parametric studies are presented and it is shown that the nonlocal nanoscale effect and axial motion effect contribute to reduce the bending rigidity of axially moving piezoelectric nanobeam and hence its natural frequency decreases within the framework of nonlocal elasticity. Moreover, the natural frequency decreases with increasing the positive external voltage, axial compressive force and change of temperature, while increases with increasing the axial tensile force. The critical speed and critical axial compressive force are determined and the dynamical buckling behaviors of axially moving piezoelectric nanobeams are indicated. It is concluded the nonlocal nanoscale parameter plays a remarkable role in the size-dependent natural frequency, critical speed and critical axial compressive force.  相似文献   

8.
基于非局部应变梯度理论,建立了一种具有尺度效应的高阶剪切变形纳米梁的力学模型. 其中,考虑了应变场和一阶应变梯度场下的非局部效应. 采用哈密顿原理推导了纳米梁的控制方程和边界条件,并给出了简支边界条件下静弯曲、自由振动和线性屈曲问题的纳维级数解. 数值结果表明,非局部效应对梁的刚度产生软化作用,应变梯度效应对纳米梁的刚度产生硬化作用,梁的刚度整体呈现软化还是硬化效应依赖于非局部参数与材料特征尺度的比值. 梁的厚度与材料特征尺度越接近,非局部应变梯度理论与经典弹性理论所预测结果之间的差异越显著.  相似文献   

9.
徐巍  王立峰  蒋经农 《力学学报》2015,47(5):751-761
基于应变梯度理论建立了单层石墨烯等效明德林(Mindlin) 板动力学方程,推导了四边简支明德林中厚板自由振动固有频率的解析解. 提出了一种考虑应变梯度的4 节点36 自由度明德林板单元,利用虚功原理建立了单层石墨烯的等效非局部板有限元模型. 通过对石墨烯振动问题的研究,验证了应变梯度有限元计算结果的收敛性. 运用该有限元法研究了尺寸、振动模态阶数以及非局部参数对石墨烯振动特性的影响. 研究表明,这种单元能够较好地适用于研究考虑复杂边界条件石墨烯的尺度效应问题. 基于应变梯度理论的明德林板所获得石墨烯的固有频率小于基于经典明德林板理论得到的结果. 尺寸较小、模态阶数较高的石墨烯振动尺度效应更加明显. 无论采用应变梯度理论还是经典弹性本构关系,考虑一阶剪切变形的明德林板模型预测的固有频率低于基尔霍夫(Kirchho) 板所预测的固有频率.   相似文献   

10.
In this study, non-linear free vibration of micro-plates based on strain gradient elasticity theory is investigated. A general form of Mindlin’s first-strain gradient elasticity theory is employed to obtain a general Kirchhoff micro-plate formulation. The von Karman strain tensor is used to capture the geometric non-linearity. The governing equations of motion and boundary conditions are obtained in a variational framework. The Homotopy analysis method is employed to obtain an accurate analytical expression for the non-linear natural frequency of vibration. For some specific values of the gradient-based material parameters, the general plate formulation can be reduced to those based on some special forms of strain gradient elasticity theory. Accordingly, three different micro-plate formulations are introduced, which are based on three special strain gradient elasticity theories. It is found that both geometric non-linearity and size effect increase the natural frequency of vibration. In a micro-plate having a thickness comparable with the material length scale parameter, the strain gradient effect on increasing the non-linear natural frequency is higher than that of the geometric non-linearity. By increasing the plate thickness, the strain gradient effect decreases or even diminishes. In this case, geometric non-linearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for micro-plates with some specific thickness to length scale parameter ratios, both geometric non-linearity and size effect have significant role on increasing the frequency of non-linear vibration.  相似文献   

11.
A microscale nonlinear Bernoulli–Euler beam model on the basis of strain gradient elasticity with surface energy is presented. The von Karman strain tensor is used to capture the effect of geometric nonlinearity. Governing equations of motion and boundary conditions are obtained using Hamilton’s principle. In particular, the developed beam model is applicable for the nonlinear vibration analysis of microbeams. By employing a global Galerkin procedure, the ordinary differential equation corresponding to the first mode of nonlinear vibration for a simply supported microbeam is obtained. Numerical investigations show that in a microbeam having a thickness comparable with its material length scale parameter, the strain gradient effect on increasing the beam natural frequency is higher than that of the geometric nonlinearity. By increasing the beam thickness, the strain gradient effect decreases or even diminishes. In this case, geometric nonlinearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for beams with some specific thickness-to-length parameter ratios, both geometric nonlinearity and size effect have significant role on increasing the frequency of nonlinear vibration.  相似文献   

12.
建立了单层石墨烯等效非局部薄板的一种新的有限元模型,并运用有限元法分析不同边界条件下单层石墨烯振动的小尺度效应。给出了基于弹性应变梯度理论下Kirchhoff板的振动方程。发展了一种4节点24自由度的板单元,用于离散化求解考虑微纳结构尺度效应的高阶微分方程。在研究四边简支板振动时,考虑应变梯度的非局部弹性有限元数值计算结果与理论分析结果相一致。用有限元方法研究了不同尺寸、振动波长、振动模态阶数、边界条件类型以及非局部参数的单层石墨烯振动。  相似文献   

13.
A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity theory. The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. The static bending, instability and free vibration problems of a rectangular micro-plate with all edges simple supported are carried out to illustrate the applicability of the present size-dependent model. The results are compared with the reduced models. The present model can predict prominent size-dependent normalized stiffness, buckling load, and natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.  相似文献   

14.
A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton's principle. The new model incorporated with Poisson effect contains three material length scale parameters and can consequently capture the size effect. This model can degenerate into the modified couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all material length scale parameters are taken to be zero respectively. In addition, the newly developed model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Timoshenko models are large as the beam thickness is comparable to the material length scale parameter. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an interesting “extreme point” phenomenon, which is quite different from that predicted by the classical Timoshenko beam model.  相似文献   

15.
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material (FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.  相似文献   

16.
A size-dependent Reddy–Levinson beam model is developed based on a strain gradient elasticity theory. Governing equations and boundary conditions are derived by using Hamilton’s principle. The model contains three material length scale parameters, which may effectively capture the size effect in micron or sub-micron. This model can degenerate into the modified couple stress model or even the classical model if two or all material length scale parameters are taken to be zero respectively. In addition, the present model recovers the micro scale Timoshenko and Bernoulli–Euler beam models based on the same strain gradient elasticity theory. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Reddy–Levinson beam are solved respectively; the results are compared with the reduced models. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Reddy–Levinson models are getting larger as the beam thickness is comparable to the material length scale parameters. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. This study may be helpful to characterize the mechanical properties of small scale beam-like structures for a wide range of potential applications.  相似文献   

17.
A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia, in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.  相似文献   

18.
A micro scale nonlinear beam model based on strain gradient elasticity is developed.Governing equations of motion and boundary conditions are obtained in a variational framework.As an example,the nonlinear vibration of microbeams is analyzed.In a beam having a thickness to length parameter ratio close to unity,the strain gradient effect on increasing the natural frequency is predominant.By increasing the beam thickness,this effect decreases and geometric nonlinearity plays the main role on increasing the natural frequency.For some specific ratios,both geometric nonlinearity and size effects have a significant role on increasing the natural frequency.  相似文献   

19.
A nonlocal Euler beam model with second-order gradient of stress taken into consideration is used to study the thermal vibration of nanobeams with elastic boundary.An analytical solution is proposed to investigate the free vibration of nonlocal Euler beams subjected to axial thermal stress.The effects of the nonlocal parameter,thermal stress and stiffness of boundary constraint on the vibration behaviors of nanobeams are revealed.The results show that natural frequencies including the thermal stress are lower than those without the thermal stress when temperature rises.The boundary-constrained springs have significant effects on the vibration of nanobeams.In addition,numerical simulations also indicate the importance of small-scale effect on the vibration of nanobeams.  相似文献   

20.
A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate. The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length. The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic tim...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号