首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the nonlinear vibration of a single-walled carbon nanotube conveying fluid is investigated utilizing a multidimensional Lindstedt–Poincaré method. Considering the geometric large deformation of the single-walled carbon nanotube and external harmonic excitation force, based on nonlocal elastic theory and Euler–Bernoulli beam theory, the nonlinear vibration equation of a fluid-conveying single-walled carbon nanotube is established. Analyzing the equation through the multidimensional Lindstedt–Poincaré method, and from the solvability condition of the nonlinear vibration equation, the cubic algebraic equation which indicates the amplitude–frequency relation is obtained. Based on the root discriminant of the cubic equation, the first order primary response of the pinned–pinned carbon nanotube is discussed. The relations among internal resonance, the amplitude and frequency of the external excitation force are analyzed in detail. When the external excite force frequency is around the first mode natural frequency, the first mode primary resonance occurs. If simultaneously the first two modes natural frequency ratio is around 3, internal resonance occurs and the internal resonance region depends on the amplitude of external excitation force.  相似文献   

2.
In this study, the nonlinear vibrations of an axially moving beam are investigated by considering the coupling of the longitudinal and transversal motion. The Galerkin method is used to truncate the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. By detuning the axially velocity, the exact parameters with which the system may turn to internal resonance are detected. The method of multiple scales is applied to the governing equations to study the nonlinear dynamics of the steady-state response caused by the internal–external resonance. The saturation and jump phenomena of such system have been reported by investigating the nonlinear amplitude–response curves with respect to external excitation, internal, and external detuning parameters. The longitudinal external excitation may trigger only longitudinal response when excitation amplitude is weak. However, beyond the critical excitation amplitude, the response energy will be transferred from the longitudinal motion to the transversal motion even the excitation is employed on the longitudinal direction. Such energy transfer due to saturation has the potential to be used in the vibration suppression.  相似文献   

3.
Based on the nonlinear mathematical model of motion of a horizontally can-tilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration. The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.  相似文献   

4.
Based on the nonlinear mathematical model of motion of a horizontally cantilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration.The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.  相似文献   

5.
胡宇达  张晓宇 《应用力学学报》2020,(2):674-681,I0015
研究了轴向运动正交各向异性条形薄板在线载荷作用下的超谐波共振问题。通过哈密顿原理导出了几何非线性下正交各向异性条形板的非线性振动方程。运用伽辽金积分法,推得了关于时间变量的量纲归一化非线性振动微分方程组。应用多尺度法求解三阶超谐波共振问题,得到了稳态运动下一阶、二阶、三阶共振形式的共振幅值响应方程。利用Liapunov方法推得不同共振形式稳态解的稳定性判据,并据此分析不同参数对系统稳定性的影响。绘制了振幅特性变化曲线图和与之对应的激发共振多解临界点曲线图,分析系统参数对共振的影响,并预测系统进入非线性共振区域的临界条件。得出激励在特定位置区间时可激发系统的超谐波共振,随着激励幅值的增加,上稳定解支减小,下稳定解支增加,且一阶模态振幅大于二阶、三阶振幅。  相似文献   

6.
In this work, we investigate the primary nonlinear resonance response of a one-dimensional continuous system, which can be regarded as a model for semi-infinite cables resting on an elastic substrate reacting in compression only, and subjected to a constant distributed load and to a small harmonic displacement applied to the finite boundary. By introducing a straightforward small amplitude expansion characterized by a smallness parameter ε and by performing a Fourier analysis, we first determine the frequencies of the oscillations of the system about the static solution at all orders. We find that, at each order, there exists a critical (cutoff) frequency, above which the solution behaves as a traveling wave toward infinity, while it decays exponentially below it. We then examine the resonance response of the system when an external harmonic excitation is applied at the finite boundary. To this aim, we scale the external excitation with the third power of ε and perform a Multiple-Time-Scale analysis, whose third-order consistency conditions give the differential equations which govern the behavior of the amplitude on the long time scale. In this way, we determine the third-order bending of the resonance curves, whose hardening or softening behavior depends upon the frequency of the chosen primary resonance.  相似文献   

7.
范舒铜  申永军 《力学学报》2022,54(2):495-502
黏弹性材料在航空、机械、土木等领域具有广阔的应用前景,而具有1.5自由度的非线性Zener模型能更好地描述其特性.因此,研究多尺度法的推广和应用具有重要意义.在传统多尺度法的基础上,推广并利用多尺度法对非线性奇数阶微分方程进行研究,解决非线性奇数阶系统的动力学求解问题.以非线性Zener模型为例,首先通过推广的多尺度法...  相似文献   

8.
Applying the multidimensional Lindstedt-Poincaré (MDLP) method, we study the forced vibrations with internal resonance of a clamped-clamped pipe conveying fluid under external periodic excitation. The frequency-amplitude response curves of the first-mode resonance with internal resonance are obtained and its characteristics are discussed; moreover, the motions of the first two modes are also analyzed in detail. The present results reveal rich and complex dynamic behaviors caused by internal resonance and that some of the internal resonances are decided by the excitation amplitude. The MDLP method is also proved to be a simple and efficient technique to deal with nonlinear dynamics.  相似文献   

9.
The nonlinear response of an initially buckled beam in the neighborhood of 1:1 internal resonance is investigated analytically, numerically, and experimentally. The method of multiple time scales is applied to derive the equations in amplitudes and phase angles. Within a small range of the internal detuning parameter, the first mode; which is externally excited, is found to transfer energy to the second mode. Outside this region, the response is governed by a unimodal response of the first mode. Stability boundaries of the unimodal response are determined in terms of the excitation level, and internal and external detuning parameters. Boundaries separating unimodal from mixed mode responses are obtained in terms of the excitation and internal detuning parameters. Stationary and non-stationary solutions are found to coexist in the case of mixed mode response. For the case of non-stationary response, the modulation of the amplitude depends on the integration increment such that the motion can be periodically or chaotically modulated for a choice of different integration increments. The results obtained by multiple time scales are qualitatively compared with those obtained by numerical simulation of the original equations of motion and by experimental measurements. Both numerical integration and experimental results reveal the occurrence of multifurcation, escaping from one well to the other in an irregular manner. and chaotic motion.  相似文献   

10.
范俊海 《力学季刊》2023,44(1):88-100
本文基于非局部弹性理论及辛叠加方法,得到放置在黏弹性介质上四角点支撑矩形纳米板稳态受迫振动问题的解析解.将纳米板受迫振动问题导入哈密顿体系,得到哈密顿控制方程,在无需任何预设函数的情况下可直接对哈密顿控制方程进行求解,得到简支纳米板稳态受迫振动问题在辛空间展开形式的解析解.进而通过边界叠加,可求出四角点支撑纳米板稳态受迫振动的解析解.数值算例中验证了本文应用辛叠加方法得到解析解的准确性,并以石墨烯纳米板为例,分析了非局部参数和黏弹性介质参数对四角点支撑石墨烯纳米板稳态受迫振动的影响.结果表明,非局部参数和黏弹性介质参数的变化会影响石墨烯纳米板的共振频率及共振幅值.  相似文献   

11.
Abstract

Functionally graded porous materials (FGPMs) have a wide range of applications as hollow members in biomedical and aeronautical engineering. In the FGPMs, the porosity is varied over the material volume because of the density change of pores. In the present work, an analytical treatment on the size-dependent nonlinear secondary resonance of FGPM micro/nano-beams subjected to periodic hard excitations is proposed in the simultaneous presence of the nonlocality and strain gradient size dependencies. Based upon the closed-cell Gaussian-random field scheme, the mechanical properties of the FGPM micro/nano-beams are extracted corresponding to the uniform and three different functionally graded patterns of the porosity dispersion. The nonlocal strain gradient theory of elasticity is applied to the classical beam theory to formulate a newly combined size-dependent beam model. Thereafter, an analytical solving methodology based on the multiple time-scales together with the Galerkin technique is adopted to achieve the nonlocal strain gradient frequency–response and amplitude–response curves associated with the subharmonic and superharmonic external excitations. For the subharmonic excitation, it is observed that the nonlocality causes to shift the junction point of the stable and unstable branches to the higher value of the detuning parameter. However, the strain gradient size dependency plays an opposite role. For the superharmonic one, it is illustrated that the nonlocal size effect makes an increment in the height of jump phenomenon and shifts the peak to higher value of the detuning parameter. However, the strain gradient small scale effect leads to decrease the height of the jump phenomenon and shifts the peak to lower value of the detuning parameter.  相似文献   

12.
研究了外激励下两端采用转动弹簧约束的铰支浅拱在发生1:1内共振时的非线性动力学行为。通过引入基本假定和无量纲化变量得到浅拱的动力学控制方程, 将阻尼项、外荷载项和非线性项去掉后,所得线性方程及对应边界条件即可确定考虑转动弹簧影响的频率和模态, 发现转动约束取不同刚度值时系统存在模态交叉与模态转向两种内共振形式。对动力方程进行Galerkin全离散, 并采用多尺度法对内共振进行了摄动分析, 得到了极坐标和直角坐标两种形式的平均方程, 其中平均方程系数与转动弹簧刚度一一对应。最低两阶模态之间1:1内共振的数值研究结果表明: 外激励能激发内共振模态的非线性相互作用, 参数处于某一范围时系统存在周期解、准周期解和混沌解窗口, 且通过(逆)倍周期分岔方式进入混沌。  相似文献   

13.
The physically-based nonlocal model is used to investigate influences of the nonlocal long-range interactions on the longitudinal vibration of nanorod. The exact solution of the vibration is determined under the condition of a uniform nonlocal kernel. Nonlocal effects in the vibration of the nanorod are examined in detail. The results show that the nanorod becomes stiffer due to the internal long-range interactions. Meanwhile, an upper bound of the material parameter characterizing the long-range interactions is found. The low-frequency insulating effect induced by the long-range interactions is predicted. This effect shows that there exists a forbidden band of basic frequency within which external excitation is not transmitted in the nanorod. The Lagrangian formulations of the physically-based nonlocal theory are established based on a new definition of nonlocal variable. By these formulations, the physically-based nonlocal model can be conveniently expanded into beam, plate and shell.  相似文献   

14.
生帝  胡宇达 《力学季刊》2019,40(4):753-761
研究在外激励力与磁场作用下轴向运动铁磁梁的磁弹性非线性主共振问题.基于弹性理论和电磁理论,给出梁的动能和弹性势能表达式,根据哈密顿原理,推导出磁场中轴向运动铁磁梁的磁弹性双向耦合非线性振动方程.通过伽辽金积分法进行离散,得出两端简支边界条件下铁磁梁磁弹性非线性强迫振动方程.应用多尺度法对方程进行求解,得出幅频响应方程.最后通过算例,给出铁磁梁的幅频特性曲线、振幅-磁感应强度和振幅-外激励力曲线并进行分析.结果显示,在幅频响应曲线中铁磁梁的轴向运动速度、外激励力、轴向拉力越大,共振振幅越大;而磁感应强度越大,振幅越小.  相似文献   

15.
Vibrations of nonlinear coupled parametrically and self-excited oscillators driven by an external harmonic force are presented in the paper. It is shown that if the force excites the system inside the principal parametric resonance then for a small excitation amplitude a resonance curve includes an internal loop. To find the analytical solutions, the problem is reduced to one degree of freedom oscillators by applications of Nonlinear Normal Modes (NNMs). The NNMs are formulated on the basis of free vibrations of a nonlinear conservative system as functions of amplitude. The analytical results are validated by numerical simulations and an essential difference between linear and nonlinear modes is pointed out.  相似文献   

16.
The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.  相似文献   

17.
According to the large amplitude equation of the circular plate on nonlinear elastic foundation , elastic resisting force has linear item , cubic nonlinear item and resisting bend elastic item. A nonlinear vibration equation is obtained with the method of Galerkin under the condition of fixed boundary. Floquet exponent at equilibrium point is obtained without external excitation. Its stability and condition of possible bifurcation is analysed. Possible chaotic vibration is analysed and studied with the method of Melnikov with external excitation . The critical curves of the chaotic region and phase figure under some foundation parameters are obtained with the method of digital artificial.  相似文献   

18.
This paper is focused on nonlinear dynamics of a shell-shaped workpiece during high speed milling. The shell-shaped workpiece is modeled as a double-curved cantilevered shell subjected to a cutting force with time delay effects. Equations of motion are derived by using the Hamilton principle based on the classical shell theory and von Karman strain-displacement relation. The resulting nonlinear partial differential equations are reduced to a two-degree-of-freedom nonlinear system by applying the Galerkin approach. The averaging method is used to obtain four-dimensional averaged equations for the case of foundational parametric resonance and 1:2 internal resonance. Using a numerical method, the dynamics of the cantilevered shell-shaped workpiece is studied under time-delay effects, parametric excitation, and forcing excitation. It is found that time-delay parameters have great impact on chaotic motion. With increasing amplitude of forcing and parametric excitations, the shell-shaped workpiece exhibits different dynamic behavior.  相似文献   

19.
Ultrasonic machining (USM) is of particular interest for the machining of non-conductive, brittle materials such as engineering ceramics. In this paper, a multi-tool technique is used in USM to reduce the vibration in the tool holder and have reasonable amplitude for the tools. This can be done via dynamic absorbers. The coupling of four nonlinear oscillators of the tool holder and tools representing ultrasonic cutting process are investigated. This leads to a four-degree-of-freedom system subjected to multi-external and multi-parametric excitation forces. The aim of this work is to control the tool holder behavior at simultaneous primary, sub-harmonic and internal resonance condition. Multiple scale perturbation method is used to obtain the solution up to the second order approximations. The different resonance cases are reported and studied numerically. The stability of the system is investigated by using both phase-plane and frequency response techniques. The effects of the different parameters of the tools on the system behavior are studied numerically. Comparison with the available published work is reported.  相似文献   

20.
The dynamical behavior of the Φ6-Van der Pol system subjected to both external and parametric excitation is investigated. The effect of parametric excitation amplitude on the routes to chaos is studied by numerical analysis. It is found that the probability of chaos happening increases along with the parametric excitation amplitude increases while the external excitation amplitude fixed. Based on the invariance principle of differential equations, the system is lead to desirable periodic orbit or chaotic state (synchronization) with different control techniques. Numerical simulations are provided to validate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号