首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
圆板在物体撞击下的非线性动力响应   总被引:6,自引:0,他引:6  
本文在Von Kármán大位移的意义上,利用虚位移原理伽辽金方法建立了圆板在物体撞击下的非线性动力响应的控制微分方程,在研究响应问题时,考虑了冲击载荷与圆板位移响应之间的耦合影响,文中使用时间增量法和奇异摄动理论求解问题的控制方程,获得了固支圆板非线性动力响应的近似解,并且求解了具体算例,绘出了圆板位移、应力响应曲线以及冲击力随时间的变化曲线。  相似文献   

2.
基于三参数粘弹性地基模型及Reddy高阶剪切变形板理论,用双重Fourier级数形式解求得粘弹性地基上四边简支对称正交及反对称斜交层合板的各模态自由振动频率的解析解,以及这两种层合板在任意横向动荷载作用下动力响应的半解析解。通过参数分析讨论了粘弹性地基参数、边厚比等因素对自振频率及动力响应的影响。结果表明,地基的剪切刚度和压缩刚度提高了板的自振频率而降低了板的振动幅值,地基的粘性作用不可忽略。  相似文献   

3.
黄小林  吴伟  王熙 《力学与实践》2017,39(4):343-348
为研究黏弹性地基上功能梯度材料板的自由和强迫振动特性,基于Reddy高阶剪切变形理论以及由Shen导得的广义Karman型方程,用双重Fourier级数法推导了三参数黏弹性地基上四边简支功能梯度材料板自由振动和动力响应的解析解,计算了各模态自振频率和半波冲击载荷作用下的动力响应,讨论了材料组分指数、黏弹性地基参数、边厚比等因素对自由振动和动力响应的影响.结果表明,黏弹性地基的剪切和压缩刚度显著提升了功能梯度材料板的振动频率,减小了动力响应;另外,地基的黏性对振动频率和动力响应也有一定的影响.  相似文献   

4.
对瞬态扭转激振荷载作用下层状饱和土中端承管桩的动力响应问题进行了研究。首先借助Laplace变换和分离变量法解耦Biot波动方程,土层层间动力相互作用简化为分布式线弹簧,并结合桩-土交界面上的应力和位移连续边界条件,导出了各节段管桩在Laplace变换域内扭转动力响应的解析表达式;然后,根据阻抗函数传递原理,并对得到的解进行Laplace数值逆变换,最终获得了瞬态扭转荷载作用下层状饱和土中管桩动力响应的时域解答。研究表明:桩顶作用三角形或半正弦荷载情况下,最大桩顶扭转角产生时刻落后于最大荷载对应时刻;且当桩周土渗透系数处于相对较高和较低范围内,桩顶转角几乎保持不变,在中间范围内则随渗透系数增大而增大;硬夹层的存在将使桩身上部扭矩增大,下部扭矩减小,软夹层下规律相反。  相似文献   

5.
张新春  白云灿  何泽群  朱昂 《应用力学学报》2020,(2):601-606,I0009,I0010
在水平激励作用下,钢管螺旋锚基础-土的动力相互作用具有明显的非线性特性。基于自制的锚土动力相互作用模型试验系统,对砂土中不同锚体几何结构的钢管螺旋锚的水平振动响应特性进行了研究,具体分析了螺旋锚长径比(L/D)、叶片距宽比(S/D0)、叶片外伸比(D0/D)、不同荷载幅值(F0)和振动频率(f)等对螺旋锚水平动力响应特性的影响,并与直桩进行了对比分析。通过研究螺旋锚周围土体的应力扩散,讨论了水平动力荷载作用下螺旋锚-土的相互作用规律。研究结果表明:长径比(L/D)是影响直桩和螺旋锚水平动力响应特性的重要因素;在锚径相同的条件下,锚土系统的共振频率随锚体长径比的增加而减小,随叶片外伸比的增加而增加,但对叶片距宽比相对不敏感;在锚体几何结构相同的前提下,激振荷载幅值越大,直桩土系统的共振频率越小,但激振荷载幅值对螺旋锚土系统共振频率的影响相对较小。  相似文献   

6.
采用积分变换和Muki的方法求解了层状地基中单桩的扭转振动问题.在分析过程中,首先对基本控制方程进行Hankel变换,建立了单层地基的初参数解答和刚度矩阵,得到层状地基的递推矩阵;然后利用递推矩阵、边界条件和桩-土变形协调条件建立了层状地基中单桩扭转振动问题的基本积分方程并进行数值求解.文末数值算例给出了退化的层状地基中刚性单桩的扭转变形,其结果与已有经典解答吻合良好.同时,并研究了两层地基中单桩的扭转动力响应,分析了桩-土参数对动力响应的影响,所得结论对工程实践和桩基扭转波检测有一定的指导意义.  相似文献   

7.
以西安钟楼为研究背景, 建立了钟楼-土层-隧道结构三者共同作用的三维有限元模型, 通过动力有限元分析得到了模拟地铁列车载荷作用下钟楼的振动响应规律; 根据现场全天候监测, 得到了钟楼在地面交通载荷作用下的振动响应; 在此基础上, 利用SRSS方法将二者进行叠加, 从而得到了钟楼木结构在地面和地下交通载荷共同作用下的动力响应, 并根据规范对其进行 了评估, 所得结论为今后相近古建筑在交通振动载荷作用下的响应分析及评估提供 了参考依据.  相似文献   

8.
采用ABAQUS/Explicit有限元分析软件对碳纤维增强铝合金层合板(CARAL)受低速冲击进行 数值模拟,研究其在承载过程中的动力响应及损伤。首先通过具体算例与文献中的结果相比较,验证了方法 的有效性;其次从试件的脱层和吸能等抗冲击角度对CARAL 进行分析,并与传统的纯碳/环氧树脂胶片 (CFRP)进行抗冲击对比分析,结果表明,CARAL具有较好的抗冲击性能。  相似文献   

9.
为研究弹性地基上含孔隙的材料特性沿厚度呈Sigmoid函数变化的功能梯度材料(S-FGM)板的振动特性,本文基于改进的Voigt模型,分别建立了孔隙为均匀分布和非均匀分布两种类型的功能梯度材料的物性参数模型。根据复合材料薄板理论导出了弹性地基上含孔隙的功能梯度材料板的运动方程,用伽辽金法寻求四边简支边界条件下板自由振动和动力响应的解析解;讨论了孔隙、弹性地基参数、材料组分指数等因素对S-FGM板自由振动和动力响应的影响。结果表明:孔隙对板自振频率的影响比较复杂,不仅与孔隙率的大小和分布形式有关,还与弹性地基参数有关;当有弹性地基作用时,板的量纲归一化基频随着孔隙率的增大而提高,并且孔隙均匀分布的S-FGM板与孔隙非均匀分布的情况相比,其量纲归一化基频更高;孔隙增大了板的动力响应,其中孔隙为均匀分布的板的动力响应对孔隙率的变化更为敏感。  相似文献   

10.
基于Winkler地基模型及Euler-Bernoulli梁理论,建立了弹性地基上有限长梁的非线性运动方程.运用Galerkin方法对运动方程进行一阶模态截断,并利用多尺度法求得该系统主共振的一阶近似解.分析了长细比、地基刚度、外激励幅值和阻尼系数等参数对系统主共振幅频响应的影响,然后通过与非共振硬激励情况对比分析主共振对其动力响应的影响.结果表明:主共振幅频响应存在跳跃和滞后现象;阻尼对主共振响应有抑制作用;主共振显著增大系统稳态动力响应位移.  相似文献   

11.
The present paper investigates the dynamic response of infinite Timoshenko beams supported by nonlinear viscoelastic foundations subjected to a moving concentrated force. Nonlinear foundation is assumed to be cubic. The nonlinear governing equations of motion are developed by considering the effects of the shear deformable beams and the shear modulus of foundations at the same time. The differential equations are, respectively, solved using the Adomian decomposition method and a perturbation method in conjunction with complex Fourier transformation. An approximate closed form solution is derived in an integral form based on the presented Green function and the theorem of residues, which is used for the calculation of the integral. The dynamic response distribution along the length of the beam is obtained from the closed form solution. The derivation process demonstrates that two methods for the dynamic response of infinite beams on nonlinear foundations with a moving force give the consistent result. The numerical results investigate the influences of the shear deformable beam and the shear modulus of foundations on dynamic responses. Moreover, the influences on the dynamic response are numerically studied for nonlinearity, viscoelasticity and other system parameters.  相似文献   

12.
The development of a shear-deformable laminated plate element, based on the Mindlin plate theory, for use in large reference displacement analysis is presented. The element is sufficiently general to accept an arbitrary number of layers and an arbitrary number of orthotrophic material property sets. Coordinate mapping is utilized so that non-rectangular elements may be modeled. The Gauss quadrature method of numerical integration is utilized to evaluate volume integrals. A comparative study is done on the use of full Gauss quadrature, reduced Gauss quadrature, mixed Gauss quadrature, and closed form integration techniques for the element. Dynamic analysis is performed on the RSSR (Revolute-Spherical-Spherical-Revolute) mechanism, with the coupler modeled as a flexible plate. The results indicate the differences in the dynamic response of the transverse shear deformable eight-noded element as compared to a four-noded plate element. Dynamically induced stresses are examined, with the results indicating that the primary deformation mode of the eight-noded Mindlin plate model being bending.  相似文献   

13.
Moving from a general plate theory, a modified general shear deformable laminated plate theory (MGFSDT) exhibiting nonlinear curvatures but still allowing for some worth features of linear curvature models (von Karman) is formulated. Starting from MGFSDT partial differential equations, a minimal discretized model (Duffing equation) for symmetric cross-ply laminates nonlinear vibrations, whose coefficients account for shear deformability and nonlinear curvatures, is obtained via the Galerkin procedure. The variable features of such a Duffing model as obtainable via alternative kinematic assumptions at the continuum level are highlighted. Through the comparison of a number of underlying models in different technical situations, information on the influence of shear deformability on system nonlinear response and on the influence of nonlinear curvatures are obtained. Frequency–response curves through a multiple scale analysis are presented for different continuous models, kinds of material, mode numbers and boundary conditions.  相似文献   

14.
The aim of this study is to investigate the method of fundamental solution (MFS) applied to a shear deformable plate (Reissner/Mindlin’s theories) resting on the elastic foundation under either a static or a dynamic load. The complete expressions for internal point kernels, i.e. fundamental solutions by the boundary element method, for the Mindlin plate theory are derived in the Laplace transform domain for the first time. On employing the MFS the boundary conditions are satisfied at collocation points by applying point forces at source points outside the domain. All variables in the time domain can be obtained by Durbin’s Laplace transform inversion method. Numerical examples are presented to demonstrate the accuracy of the MFS and comparisons are made with other numerical solutions. In addition, the sensitivity and convergence of the method are discussed for a static problem. The proposed MFS is shown to be simple to implement and gives satisfactory results for shear deformable plates under static and dynamic loads.  相似文献   

15.
Based on Mindlin's plate theory, free vibration analysis of moderately thick shear deformable annular functionally graded plate coupled with piezoelectric layers is presented in this paper. A consistent formulation that satisfies the Maxwell static electricity equation is presented so that the full coupling effect of the piezoelectric layer on the dynamic characteristics of the annular FGM plate can be estimated based on the free vibration results. The differential equations of motion are solved analytically for various boundary conditions of the plate through the transformation of variable method. The applicability of the proposed model is analyzed by studying the effect of varying the gradient index of FGM plate on the free vibration characteristics of the structure. For some specific cases, obtained results were cross checked with those existing literatures and furthermore, verified by those obtained from three-dimensional finite element (3D FE) analyses.  相似文献   

16.
基于YNS层合格理论,建立反对称铺设层合板动力问题的Hamilton正则方程,并采用共轭辛正交归一关系给出一对边简支,另一对边为任意支承层合板自振频率的精确解,数值算例讨论了长宽比,铺设角,层数及剪切修正系数的影响。  相似文献   

17.
The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak’s model or Winkler’s model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.  相似文献   

18.
A simple isoparametric finite element formulation based on a higher-order displacement model for flexure analysis of multilayer symmetric sandwich plates is presented. The assumed displacement model accounts for non-linear variation of inplane displacements and constant variation of transverse displacement through the plate thickness. Further, the present formulation does not require the fictitious shear correction coefficient(s) generally associated with the first-order shear deformable theories. Two sandwich plate theories are developed: one in which the free shear stress conditions on the top and bottom bounding planes are imposed and another, in which such conditions are not imposed. The validity of the present development(s) is established through, numerical evaluations for deflections/stresses/stress-resultants and their comparisons with the available three-dimensional analyses/closed-form/other finite element solutions. Comparison of results from thin plate. Mindlin and present analyses with the exact three-dimensional analyses yields some important conclusions regarding the effects of the assumptions made in the CPT and Mindlin type theories. The comparative study further establishes the necessity of a higher-order shear deformable theory incorporating warping of the cross-section particularly for sandwich plates.  相似文献   

19.
The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the efects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial differential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge–Kutta method. Moreover, the efects of diferent truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.  相似文献   

20.
In this work, a thorough investigation is presented into the nonlinear resonant dynamics of geometrically imperfect shear deformable nanobeams subjected to harmonic external excitation force in the transverse direction. To this end, the Gurtin–Murdoch surface elasticity theory together with Reddy’s third-order shear deformation beam theory is utilized to take into account the size-dependent behavior of nanobeams and the effects of transverse shear deformation and rotary inertia, respectively. The kinematic nonlinearity is considered using the von Kármán kinematic hypothesis. The geometric imperfection as a slight curvature is assumed as the mode shape associated with the first vibration mode. The weak form of geometrically nonlinear governing equations of motion is derived using the variational differential quadrature (VDQ) technique and Lagrange equations. Then, a multistep numerical scheme is employed to solve the obtained governing equations in order to study the nonlinear frequency–response and force–response curves of nanobeams. Comprehensive studies into the effects of initial imperfection and boundary condition as well as geometric parameters on the nonlinear dynamic characteristics of imperfect shear deformable nanobeams are carried out through numerical results. Finally, the importance of incorporating the surface stress effects via the Gurtin–Murdoch elasticity theory, is emphasized by comparing the nonlinear dynamic responses of the nanobeams with different thicknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号