首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present article is concerned with a 2D dynamic contact problem of a rigid solid occupying a wavy surface moving on anisotropic multiferroic materials. Three bulk wave velocities for anisotropic multiferroic materials are obtained. Five harmonic functions are suggested to derive the general solutions of anisotropic multiferroic governing equations based on the generalized Almansi’s theorem. The contact length and various stresses, electric displacements, and magnetic inductions can be given in the whole half-plane analytically. Figures are plotted to gain an insight of how the velocity and the elastic coefficient influence the contact performance of anisotropic multiferroic materials. Numerical results show that the contact length can be enlarged by escalating the velocity of the rigid solid.  相似文献   

2.
The contact problem for a prestressed elastic strip reinforced with equally spaced elastic plates is considered. The Fourier integral transform is used to construct an influence function of a unit concentrated force acting on the infinite elastic strip with one edge constrained. The transmission of forces from the thin elastic plates to the prestressed strip is analyzed. On the assumption that the beam bending model and the uniaxial stress model are valid for an elastic plate subjected to both vertical and horizontal forces, the problem is mathematically formulated as a system of integro-differential equations for unknown contact stresses. This system is reduced to an infinite system of algebraic equations solved by the reduction method. The effect of the initial stresses on the distribution of contact forces in the strip under tension and compression is studied  相似文献   

3.
In this paper, we present the homogenization of an anisotropic hollow layered tube with discontinuous elastic coefficients. We focus on some aspects of technological importance, such as the effective coefficients of anisotropic materials, the behavior of the homogenized displacements and stresses, the discontinuities of in-plane shear, hoop and longitudinal stresses, the homogenization-induced anisotropy in the isotropic case. We conclude that the problem of cylindrically anisotropic tubes under extension, torsion, shearing and pressuring is stable by homogenization and we define the effective tensor of the material elastic coefficients. Some numerical examples confirm the theoretical results.  相似文献   

4.
Many materials contain inhomogeneities or inclusions that may greatly affect their mechanical properties. Such inhomogeneities are for example encountered in the case of composite materials or materials containing precipitates. This paper presents an analysis of contact pressure and subsurface stress field for contact problems in the presence of anisotropic elastic inhomogeneities of ellipsoidal shape. Accounting for any orientation and material properties of the inhomogeneities are the major novelties of this work. The semi-analytical method proposed to solve the contact problem is based on Eshelby’s formalism and uses 2D and 3D Fast Fourier Transforms to speed up the computation. The time and memory necessary are greatly reduced in comparison with the classical finite element method. The model can be seen as an enrichment technique where the enrichment fields from the heterogeneous solution are superimposed to the homogeneous problem. The definition of complex geometries made by combination of inclusions can easily be achieved. A parametric analysis on the effect of elastic properties and geometrical features of the inhomogeneity (size, depth and orientation) is proposed. The model allows to obtain the contact pressure distribution – disturbed by the presence of inhomogeneities – as well as subsurface and matrix/inhomogeneity interface stresses. It is shown that the presence of an inclusion below the contact surface affects significantly the contact pressure and subsurfaces stress distributions when located at a depth lower than 0.7 times the contact radius. The anisotropy directions and material data are also key elements that strongly affect the elastic contact solution. In the case of normal contact between a spherical indenter and an elastic half space containing a single inhomogeneity whose center is located straight below the contact center, the normal stress at the inhomogeneity/matrix interface is mostly compressive. Finally when the axes of the ellipsoidal inclusion do not coincide with the contact problem axes, the pressure distribution is not symmetrical.  相似文献   

5.
The problem considered is that of a rigid flat-ended punch with rectangular contact area pressed into a linear elastic half-space to a uniform depth. Both the lubricated and adhesive cases are treated. The problem reduces to solving an integral equation (or equations) for the contact stresses. These stresses have a singular nature which is dealt with explicitly by a singularity-incorporating finite-element method. Values for the stiffness of the lubricated punch and the adhesive punch are determined: the effect of adhesion on the stiffness is found to be small, producing an increase of the order of 3%.  相似文献   

6.
Summary An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x 2, the expression for the displacement jumps and stresses along the interface are found via a sectionally holomorphic vector function. For piezoceramics of the symmetry class 6 mm and for electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem which can be solved analytically. Further, analytical expressions for the stresses, electrical displacements, derivatives of elastic displacement jumps, stress and electrical intensity factors are found at the interface. Real contact zone lengths and the well-known oscillating solution are derived from the obtained solution as well. Analytical relationships between the fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of an interface crack in the discontinuity area of a piezoelectric bimaterial. Received 16 March 1999; accepted for publication 31 May 1999  相似文献   

7.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

8.
A contact problem is studied for a prestressed elastic strip with an elastic reinforcement. The integral Fourier transform is used to construct an influence function for an infinite strip with one face fixed. A unit concentrated force is applied to the strip at an arbitrary angle. The contact problem on force transfer from a thin infinite stringer to the prestressed strip is solved. The problem is mathematically formulated as a system of integro-differential equations for the unknown contact stresses on the assumption that the beam bending model and the uniaxial stress model are valid for the stringer, which is subjected to both vertical and horizontal forces. This system is solved in a closed form using the integral Fourier transform. The contact stresses are expressed in terms of Fourier integrals in a quite simple form. The influence of the initial stresses on the contact stress distribution is analyzed, and effects of concentrated load are revealed  相似文献   

9.
Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001–1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids.  相似文献   

10.
We consider the plane problem on the contact interaction of an elastic patch with an elastic strip loaded at infinity by a tensile force parallel to the strip boundaries. We assume that the patch resists extension and does not resist bending. We determine the contact tangential stresses under the patch, the patch point displacements, and the strip strain distortion factor. The problem is solved by the regular asymptotic method of “large λ” and the method of special orthonormal polynomials.In plane problems, the method of “large λ” was first used in [1], and the method of special orthonormal polynomials was first used in [2].  相似文献   

11.
Contact between curved rough bodies is an important engineering problem. The paper addresses the problem in its simplest form where a smooth rigid cylinder presses down an elastic half space bounded by a plane of uniformly spaced cylindrical asperities. Keeping the separation between the bodies unchanged the problem is inverted and solved using the method of complex variables. As the asperities deform as well as move as rigid bodies, contact lengths and positions develop non-symmetrically with respect to the initial axes of symmetry of the asperities. The resulting local contact pressures are non-Hertzian and the normal load for a given contact area is greater than that estimated using a priori Hertzian pressure profiles.  相似文献   

12.
International Applied Mechanics - The problem of contact interaction without friction between an elastic cylindrical ring punch and an elastic half-space with initial (residual) stresses under...  相似文献   

13.
We solve the problem of determining the stress-strain state of an anisotropic plate with an elliptic hole and a system of thin rectilinear elastic inclusions. We assume that there is a perfect mechanical contact between the inclusions and the plate. We deal with a more precise junction model with the flexural rigidity of inclusions taken into account. (The tangential and normal stresses, as well as the derivatives of the displacements, experience a jump across the line of contact.) The solution of the problem is constructed in the form of complex potentials automatically satisfying the boundary conditions on the contour of the elliptic hole and at infinity. The problem is reduced to a system of singular integral equations, which is solved numerically. We study the influence of the rigidity and geometry parameters of the elastic inclusions on the stress distribution and value on the contour of the hole in the plate. We also compare the numerical results obtained here with the known data.  相似文献   

14.
We formulate the boundary value problem of traction for inhomogeneous anisotropic elastic materials in terms of stresses following the method introduced by Pobedria and apply it to spherically anisotropic materials. An example of spherically symmetric deformation of spherically uniform anisotropic materials is presented.  相似文献   

15.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

16.
The contact interaction of an elastic punch of arbitrary cross-section and an elastic semi-space with initial (residual) stresses is studied. A general method to solve the problem is proposed. It allows solving contact problems for bodies with initial (residual) stresses when the solution of the corresponding elastic problem is known __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 28–40, December 2007.  相似文献   

17.
The dynamic contact problem of a plane punch motion on the boundary of an elastic half-plane is considered. The punch velocity is constant and does not exceed the Rayleigh wave velocity. The moving punch deforms the elastic half-plane penetrating into it so that the punch base remains parallel to itself at all times. The contact problem is reduced to solving a two-dimensional integral equation for the contact stresses whose two-dimensional kernel depends on the difference of arguments in each variable. A special approximation to the kernel is used to obtain effective solutions of the integral equation. All basic characteristics of the problem including the force of the punch elastic action on the elastic half-plane and the moment stabilizing the punch in the horizontal position in the process of penetration are obtained. A similar problem was considered in [1] and earlier in the “mode of steady-state motions” in [2, 3] and in other publications.  相似文献   

18.
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.  相似文献   

19.
A numerical solution is constructed for the axisymmetric problem of the diffraction of a plane longitudinal wave in a rigid disc (cylinder) of finite thickness. The disc is enclosed in an unbounded elastic medium; at the contact surface, the tangential stresses are limited by some constant. The incident wave moves along the axis of the cylinder and has the form of a semiinfinite washed-out step. At the same time, a solution is obtained to the corresponding static problem. A study was made of the dependence of the rate of motion of the cylinder and the stress field on the parameters of the problem. In particular, it is shown that the contact conditions have a considerable effect on the stress field only near the lateral surface. The results obtained can be useful for evaluating the errors in measurement of the stresses and velocities in an elastic medium, and possibly also in certain other cases.Deceased.Translated from Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, No. 3, pp. 139–150, May–June, 1972.  相似文献   

20.
A closed form solution to the plane problem of the theory of elasticity for an infinite anisotropic bimaterial space (plane) with a periodic set of the interface cracks with frictionless contact zones near its tips is obtained. By means of the complex function presentation the problem is reduced to the combined Dirichlet–Riemann boundary value problem for a sectionally holomorphic function and solved exactly. The equations for the determination of the contact zone lengths as well as the closed form expressions for the stress intensity factors are carried out. The variation of the mentioned values with respect to the distance between the cracks is illustrated in table and graphical forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号